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ABSTRACT

Energy absorbing mechanisms in sand subjected to one-dimensional
compression are reported, For pressures below ‘crushing of the grains,
a granular medium of equal radii elastic spheres in a face-centered cubic
array is analyzed. Expressions are obtained for the axial stress-strain
curve, constrained modulus, coefficient of earth pressure at rest, and
relationship between absorbed energy and input energy for one cycle of
loading. The energy absorbed as a result of crushing is considered by
analyzing statistical relationships between élxanges in grain size distribution
curves and the new surface areas created. An apparatus is described which
has the capability of maintaining conditions at zero radial strain under in-
creasing axial stress. The lateral stresses developed under these conditions
are measured, Preliminary experimental results are presented for one
sand which show the variation of the coefficient of earth pressure at rest
and the stress-strain relationships with initial void ratio, overconsolidation

ratio, and strain rate. A correlation of theory and test results is presented.
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CHAPTER 1
INTRODUCTION

1.1 Object and Scope

The object of this study is to define the mechanisms by which
granular materials such as dry sands and gravels esbsorb energy when sub-
Jected to an applied state of stress. The study therefore is an investi-
gation of the stress-strain behavior and hysteresis effects in cohesion-
less granular materials subjected to increments of stress extending into
the higher pressure ranges.

Tﬁe usual concept of a stress-strain relationship for elastic
solids does not apply to granular materials. The ideal group of materials
classified as elastic solids exhibit a linear scress-strain relation. In
such a material the stress-strain properties may be described by elastic
constants. A granular medium such as soil is entirely different how-
ever, in that constants cannot be used to describe the stress-strain
properties of the medium even if the material properties of the parti-
cles and the packing arrangement are known. The stiffneas of a granular
medium is not only dependent upon the material composition of the parti-
cles and the packing arrangement (relative density), but the stiffness
is also a non-linear function of the stress tensor. The dependence of
the stress-strain relation can be illustrated by considering various
states of stress on the cylindrical sample of soil shown in Fig. 1l.1.
Curve 1 shovs an axiasl stress-strain curve for a sample of soil which
was compressed hydrostatically with Op = Oy The concave upward stress-
strain relationship is a typical relationship becsuse as the soil Ve-
comes denser the resistance to volume change increases. Curve 3 illus-

trates an axial stress-strain curve for a sample under constant radial




stress which is deformed by increasing the axiel stress. The resulting
stress-strain curve is concave downward indicating that the resistance »
to deformation increases at a decreasing rate. This behavior is typical
vhere the primary resistance to deformation is a shearing resistance
rather than a resistance to volume change. Curve 2 is a one dimensionsal
compression curve where the axial stress 1s increased under the condi-
tions of zero radial strain. In this situation the lateral stresses are
not controlled and are statically indeterminate. The concave upvard
stress-strain curve shows that the resistance to deformation in one
dimensional compression 1s primarily a resistance to a change in volume.
These examples illustrate the various types of behavior manifested by
soil and demonstrates the dependence of the stress-gtrain relation on
the applied state of stress. The general stress-strain relations in a
granular material are therefore very complicated, especially when the
shearing stresses predominate as in curve 3 and particles rotste, slide,
end a rearrangement of particles is constantly taeking place.

In order to eliminate the variables introduced by gross re-
arrangement and other uncertainties which occur under large shearing
stresses, this study was limited to those cases where the shearing
stresses are small with respect to the normal stresges. The behavior
in one dimensionai compression has been emphasized because this case is
of practical importance to the Air Force. The one dimensional case is
a reasonable representation for an important group of protective construc-
tion problems; those where the air blast induced ground shock is of pri-
mery importance. In this condition of loading the radial extent of the 'y
loaded area is large in comparison to the thickness of highly compressible
surface soil and near surface unconsolidated rock strata. Under this

condition of loading, the strata are laterally confined such that the
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only displacement that cen occur is in the direction of stress wave pro-
pagation.

A typical stress-strain curve for a granular material such as
sand subjected to static loads in one dimensional compression is shown
" qualitatively in Fig. 1.2. This curve shows that the siress-strain be-
havior and consequently the energy absorption mechanisms are dependent
to a large extent on the magnitude of pressure.

The behavior in the very low stress ranges, (Region 1, Fig.
1.2), reflects a rearrangement of the grains and the stress-strain curve
is8 concave downward. The energy absorbed in the compaction process is
of course non-recoverable; however, if the pressure subsequently becomes
quite large this energy loss is quite small compared to losses caused
by other phenomena.

As the load is increased the particles begin to lock together
and become a stable matrix of elastic particles (Region 2). In this
higher stress region the strains that take place in the material are due
primarily to the deformation of the particles at the points of contact.
There is of course some rearrangement continuing in this region but
studies indicate that the rearrangement is not significant at this pres-
sure level. The behavior in this region is essentially a non-linear
elastic behavior in that there is little permanent set resulting from
an 1ncre£ent of stress applied and removed vithin Region 2. This be-
havior can be analytically studied by means of the Hertz-Mindlin con-
tact theory which is discussed in detail in Chapter 3. A study of this
type vas made on a face centered array of equi-radii spheres. A theo-
retical stress-strain curve wvas derived for the array of spheres in

hydrostatic compression and the concepts were extended to obtain a
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stress-strain relationship for the array subjected to the boundary condi-
tions concomitant with one dimensional compression. It was found that in
one dimensional compression it is possible to have energy absorbed due to
friction at the contacts when no permanent strain results from a cycle of
loading. The question arises as to whether such a theory based on the
theories of contact stresses is applicable to soils because of the magni-
tude of the stresses and the small radiil of the grains. Appendix A treats
this topic and shows that for the stress ranges of interest, namely those
in Region 2 prior to particle crushing, the contact theory is applicable.
For certain cases other than complete confinement with various amounts of
lateral deformation permitted, it was necessary to obtain numerical solu-
tions to the theory of granular media since a closed form solution was not
possible. Appendix B outlines the work carried out and the program coded
for a digital computer.

As the stress continues to increase to the neighborhood of onme
to five thousand psi the contact forces become so large that the particles
begin to crush. The crushing is accompanied by a certain amount of re-
arrangement vhich 1s reflected in the concave downward stress-strain curve
shown in Region 3. Energy is absorbed in this range by the creation of
nev surface area during crushing end emergy is dissipated as heat due to
rearrangement of the new particlés into a denser configuration. Both of
these mechanisms absordb eneréy vhich is no longer in the form of recover-
aeble strain energy.

As the pressure continues to increase, the particles lock again
and the curve again becomes concave upward as shown in Region 4, Fig. 1.2.
In general the stress-strain curve in Region U tends to follow the same

general pattern wvhich took place in Region 2 before crushing except that
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the particles are smaller and more angular than before. There is evid-
ence however, which indicates that particles are continuing to crush
throughout Region 4. Chapter U4 considers the energy required to create
nev surfaces. It is found that after crushing begins the energy absorbed
due to particle crushing seems 1.0 be linearly related to,h the stress level.
Unfortunately, there are no data available in the literature
vhich can be used to fully corroborate the analytical conclusions sum-
marized above and presented in detail in Chapters 3 and 4. In order to
fi1l this gap in our experimental knowledge a series of exploratory tests
on smooth uniform sand in one dimensional compression were conducted to
provide a better understanding of the mechanisms by which sand absorbs
energy. The design and construction of a new testing apparatus was re-
quired to obtain the necessary data in the higher pressure ranges. The
design of the apparatus and the test results are described in Chapter 5.
The data presented in Chapter 5 show that energy can be absorbed
by sand in stress ranges below crushing with only very small permanent
strains resulting. This behavior is substantially the same as predicted

from the analysis of the medium composed of equi-radii spheres.
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CHAPTER 2
SELECTED SUMMARY OF PREVIOUS WORK

It is not the purpose h'erein to meke a thorough survey of all
of the important results reported in the literature which have contributed
to an understanding of the behavior of granular materials and soils. Such
an effort would bé quite voluminous and ‘a.n extensive report in itself, It
is the writers' understending that Professor R, V. Whitman at MIT is cur-
rently preparing such a report, [2.37]. Furthermore, a very excellent
comprehensive summary of the state of knowledge, on the behavior of granu-
lar materials, up to 1957 has been made by Deresiewicz [2.1]. The reader
is referred to these works for a comprehensive survey of the literature on
the behavior of soils.

The purpose of this chapter is to call attention to some of the
more recent findings which are important in understanding soil behavior
and also to point out some other works which, while not new, have been
somevhat overlooked in the literature. It is hoped that the few comments
made here will be useful to the reader as supplements to the two ab§ve
noted works.

2.1 Theories of Granular Medis

There are many theories which have been developed in the past
to attempt to predict or rationalize the behavior of granular materials.
Some of these have been based on the concepts of the theory of plasti-
city. Others have been founded on a study of spherical arrays such as
that swmmarized by Deresievicz [2.1].

A recent publication worthy of note is a sumary of Russian
contributions in s0il mechanics by Klein {2.2]. This is primarily a

historical account of the development of the theory of granular media in
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Russia from 1917 to 1957 and includes little actual theory. Its major
contribution is that it provides an excellent bdbibliography of only Rus-
sian work (some 175 iistings) in this area up to the early part of 1957.
Another survey of recent Russian work in soill mechanics was also con-
ducted by Drashevska [2.34} in 1958.

One of the most recent theories of soil mechanics developed
in Russia 1s that presented by Grigoryan [2.3). He formulates a the-
ory vhich 1is presumed to be applicable for soils subjected to extremely
large pressures (in terms of thousands of psi). His theory suggests
that the behavior of a soil is dependent on two functions, one character-
izing the volume deformation of the medium and the other the properties
of the medium during shear deformation. It should be noted that the
most important difference between the Grigoryan model and the usual
plasticity theory is that here the volume deformation relationships be-
tween the mean pressure p = -1/3 (evx +o + az) and the density 1s not
assumed to be elastic (reversible). They are, however, connected by a
well defined relationship which is different for increasing and decreas-
ing pressure. This theory gives a loading and unloading stress-strain
curve similar in shape to Fig. 2.1, Grigoryan's theory is discussed in
greater detail in a later pudblication [2.4] and some inaccuracies in
the original work are corrected.

Some experimental work is presented by Alekseenko, Grigoryan,
et al [2.4] in support of the theory proposed by Grigoryan for granular
media. A series of TNT explosions Wwas set off, and the soil behavior
vas measured radially outward awvay from the blasts. The results seemed
to s‘hov a definite linear relationship between the mean compressive stress

and the square root of the second stress invariant. For average stresses




less than 15 kg/ cn2 it was found that the second stress invariant could
be related to the average siress.

Another recent theory of soil mechanics has been presented in
a monograph by Geniev {2.5). Here a theory for the plahe motion of a
granular medium is formulated which is an extension of the work of Soko-
lovsky. The equations of motion consist of (1) two equations of equi-
1librium (2) conditions for Coulomb boundary equilibrium (3) incompress-
1bility conditions and (4) conditions of convergence of the directions
of maximum velocities of shear deformation with the direction of lines
of slip. The application of Geniev's theory to the dynamic soil-struc-
ture interaction problem 1s currently under study at the University of
Nlinois [2.35].

One theoretical treatment which is not too well known is that
developed by Oshima [2.6] wherein an attempt is made to specify in tensor
notation all of the contributing effects wvhich should be included in a
theoryj of granular media. The approach has some merit in that an attempt
is made to present a consiste;zt theory wvhich encompasses the entire geo-
metry of the medium. Unfortunately, vhile the abstractness presents a
convenient compact form for the theory, there is difficulty in obtaining
all of the terms in the significant tensors. .

Katz and others (2.7 amd 2.8] have studied the propagation of
plane stress-wvaves in sand with a two-paremeter exponential stress-strain
law, including hysteresis. Along & similar line Parkin has treated the
one dimensional wave propagation in sand in an attempt to explain the be-
havior measured by Whitman [2.15] in some experiments carried out in the
early 1950's. The subsequent discussions of the latter paper by Fulton

and Hendron [2.11], Selig and Vey (2.12], whitman [2.13) and Parkin [2.14]
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are particularly interesting in summarizing the current state of know-
ledge and problems assoclated with predicting the behavior of sand. An
investigation of the dynamic soil-structure interaction problem using a
discrete mass-spring model to represent the soil is currently under way
at the University of Illinois [2.36].

Some of the more recent papers in English on the application
of the theory of plasticity to the behavior of soils include [2.16 -
2,20}, Theoretic;l studies of the stress conditions existing in tri-
axial compression have been formulated by Balla [2.21] and Haythornthwaite
[2.22].

2.2 Experimental Results

One result which is of importance to this study is given in a
paper by Allen, et al [2.23], which contains the results of a series of
tests on sand (Fig. 2.2). The particular significance of these tests is
that the pressures were extremely high (approximately 90,000 psi). The
sample was placed inside a steel cylinder to approximate conditions of
one dimensional compression. Unfortunately, the sample size wvas of the
wrong proportion for a one dimensional test (2.31 inches in diameter and
7.88 inches high) and the stress-strain behavior mey very well be signi-
ficantly affected by the deformations of the container and side friction
effects. These results are of significance, however, in indicating the
general shape of the stress-strain curve in the high pressure regions.
Grigoryan used this general shape to support his theory of granular media.

J. M Roberts [2.24) has investigated the hysteresis character-
istics of an QOttawa sand with lateral confinement closely approximating

one dimensional conditions. Some 200 loading cycles were carried out in

. e e
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a stress region below 50 psi. It was found from the hysteresis loops that
sand can absorb energy without having any permanent displacements. The
reason for this phenomenon noted by Roberts and more conclusive experi-
mental results, are given by the authors in the present report.

Studies on the one dimensional stress-strain behavior of sand
and quartz in the higher pressure regions were carried out by J. E. Rob-
erts and others at MIT [2.25, 2.26]. Some of these data are analyzed in
Chapter 4 of this report in en effort to shed some light on the mechanism
by which sand absorbs energy in pressure regions of 5,000 - 20,000 psi.

Tests on the static and dynamic stress-strain characteristics
of sands in the low pressure regions have been conducted by Thompson at
the Bellistics Research Laboratory and the results have been published
in a series of short reports [2.27, 2.28, 2.29].

KJjellmen and Jakobson [2.30] investigated the influence of grain
shape and grain size on the behavior of granular materials incesed in a
series of steel rings in an attempt to eliminate the side friction effects.
A triaxial compression apparatus was modified by Weissman and Hart [2.31]
to study the demping capacity of granular soils as reflected by the hys-
teresis loop. Wolfskill and Buchanan [2.32] discuss some of the aspects
oL dynamic foundation loads supported by a granular soil. Other recent

work on dynamic triaxisl tests includes that by Shannon, et al [2.33].



~1L4-

REFERENCES

2.1 Deresievicz, H.,, "Mechanics of Granular Matter,” Advances in Appl-
ied Mechenics, Vol. 5, Academic Press, Inc., New York, New York,
1958, p. 233.

2.2 Klein, G. K., "Pressure and Resistance of Granular (Cohesionless)
Media, Analysis of Retaining Walls and Subterranean Structures,”
Ch. 9 of Structural Mechanics in the U.S.8.R. 1917-1957 ed. by I.
M. Rabinovich, Pergamon Press, pp. 396-426.

2.3 Grigoryan, S. S., "The General Equation of Soil Mechanics,” Soviet
Physics Doklady, Vol. 4, Fo. 1, Aug./Dec. 1959.

2.4 Grigoryan, S. S., "On Basic Concepts in Soil Dynamics," PMM Jour.
Appl. Math., and Mech., Vol. 24, Ro. 6, 1960, pp. 1604-1627.

2.5 Genieve, G. A., "Questions of the Dynamics of a Granular Medium"
(in Russian), Kauch. Soobsheh. Tsentr. Kauk-i. In-ta Stroit.
Konstruktsii Akad. Str-va i Arkhitekt. SSSR No. 2, 1958.

2.6 Oshima, N., "Dynemics of Granular Media” Ch. D-6 Memoirs of the
Unifying Study of the Basic Problems in Engineering Sciences by
Means of Geometry, Vol, I, ed. by K. Kondo, Gakujuts Bunken Fukya-
Kai, Tokio, 1955.

2.7 Katz, S., and Ahrens, T. J., "Propagation of Plane Waves in Granu-
lar Materials, Part I," Tech. Report No. 1, Ballistics Research
Laboratory, Contract No. DA-115-509-ORD-1009, Dec. 1959. _

2.8 Katz, S., and Woeber, A. F., "Propagation of Plane VWaves in Granu-
lar Materials, Part II" Tech. Report No. 2, Ballistics Research
Laboratory, Contract No. DA-115-509-ORD-1009, Sept. 1960. B

2.9 Parkin, B. R., "Impact Wave Propegation in Columns of Sand,” Re-
port Ro. RM-2486, The RAND Corporation, Nov. 1959.

2.10 Parkin, B. R., "Impact Waves in Sand: Theory Compared with Experi-
ments on Sand Columns,” Proc. ASCE, Vol. 87, SM3, June 1961, pp. 1-32.

2.11 Fultonm, R. E., and Hendron; A. J., Jr., "Discussion: Impact Waves
in Sand: Theory Compared with Experiments on Sand Columms,” Proc.
ASCE, Vol. 87, No. SM6, Dec. 1961, pp. 69-T3.

2.12 Selig, E. T., and Vey, E., "Discussion: Impact Waves in Sand: The-
ory Compared with Experiments on Sand Colwmns,” Proc. ASCE, Vol. 87,
No. SM6, Dec. 1961, pp. 73-T6.

2.13 Whitman, R. V., "Discussion: Impact Waves in Sand: Theory Compared
with Experiments on Sand Columns,” Proc. ASCE, Vol. 88, Fo. SM1,
Feb. 1%2’ ppo u9-58.

2.14 Parkin, B. R., "Discussion: Impect Waves in Sand: Theory Compared
with Experiments on Send Colums,” Proc. ASCE, Vol. 88, Fo. SM3,

June 1962, pp. 205-207.




2.15

2.16

2.17

2.18

2.19
2.20
2.21
2.22

2.25

2.2k

2.25

2 .26

2.27

2.28

-15-

Vhitman, R. V., et al, "The Behavior of Soils Under Dynamic Loading:
3. Pinal Report of Laboratory Studies, " Dept. of Civ. and San.
Engrg., M.I.T., Aug. 195k.

Drucker, D. C., Gibson, R. E., and Henkel, D. J., "Soil Mechenics
and Work Hardening Theories of Plasticity" Trans. ASCE. Vol. 122,
1957, pp. 338-346.

Drucker, D. C., "Coulomb Friction, Plasticity, and Limit Loads,
JO\n‘. Applc kcho, Vol. 21, 1951" ppo 71‘7&.

Jenike, A. W., and Shield, R. T., "On the Plastic Flow of Coulomb
Solids Beyond Original Failure,” Jour. Appl. Mech., Vol. 26, 1959,
ppa 599-&20

Kirkpatrick, W. M., "The Condition of Failure for Sands," Proc.
Ath Intl. Conf. Soil Mech., 1957, pp. 172-178.

Takagl, S., Plane Plastic Deformation of Soils, Proc. ASCE, Vol. 88,
No. EM3, June 1962.

Balla, A., "Stress Conditions in Triaxial Compression, " Proc. ASCE,
VOI. %’ k- sm, lkc. 19&, ppc 57'8!‘0

Haythornthwaite, R. M., "Mechanics of the Triaxial Test for Soils,"
Proc. ASCE, Vol. 86, No. SM5, Oct. 1960.

Allen, W. M., Mayfield, E. B,, and Morrison, H. L., "Dynamics of a
Projectile Penetrating Sand," Journal Appl. Physics, Vol. 28, No. 3,
March 1957, pp. 370-376.

Roberts, J. M., "A Study of Hysteresis in Granular Soils," M.S. Thesis,
Massachusetts Institute of Technology, June 1961.

"Study of Soils Consolidated Under High Pressure, " Report for the
Creole Petroleum Corp., Maracaiba, Venezuels, Massachusetts Institute
of Technology, Oct. 1959.

Roberts, J. E. and de Souza, J. M., "The Compressibility of Sands,"
Proceedings ASTM, Vol. 58, 1958, p. 1269.

Thompson, A. A., "The Relation of Seismic Energy Attenuation to the
Area Under the Stress-Strain Curve, " Memorandum Report 1261, Ballistics
Research Laboratory, Apr. 1960.

Thompson, A. A., "A Comparison of the Dynamic and Static Stress-Strain
Curve in Sand Under Confined and Unconfined Conditions," Memorandum
Report 1262, Ballistics Research Laboratory, Apr. 1960.

Thompson, A. A., "The Comparison of Strain and Kinetic Energy in a
Plastic Wave Moving Through Sand," Memorandum Report 1263, Ballistics
Research Laboratory, Apr. 1960.



2.35

2.35

2.37

-16-

KJellman, W., and Jakobson, B., "Some Relations Between Stress and
Strain in Coarse-Grained Cohesionless Materials,” Bulletin No. 9,
Proc. Royal Swedish Geotechnical Institute, Stockholm 1955.

Weissman, G. F. and Hart, R. R., "The Damping Cepacity of Some Gran-
uwlar Soils,” ASTM Spec, Tech. Pub. No. 305, 45-54, 1961.

Wolfskill, L. A., and Buchanan, S. J., "Dynamic Stress-Strain Char-
acteristics of Granular Materials," Presented at National Conven-
tion ASCE, Houston, Texas, Feb. 1962.

Shannon, W. L., Yamane, G., and Dietrich, R. J., "Dynamic Triaxisl
Tests on Sand," Proc. First Panamerican Conf. on Soil Mech. and
Found. Engrg., Mexico City, Sept. 1959.

Drashevska, L., "Review of Recent U.S.S.R. Publications in Selected
Fields or Engineering Soil Science," M.A. Thesis, Columbia Univer-
sity, 1956.

Bedesem, W. B., Jennings, R. L., Das, Y. C., &and Robinson, A. R.,
"Soil Structure Interaction and Dynamics of Shells,” Interim Tech-
nical Report for Air Force Special Weapons Center, Contract AF29(601)-
4508, University of Illinois, Aug. 1962.

Ang, A., and Newmark, N. M., "Computation of Underground Structural
Response,” Technical Supplement Report for Defense Atomic Support
Agency, Contract DA-49-146-XZ-104, University of Illinois, March

1962,

Whitman, R. V., Nuclear Geoplosics, Part Two - Mechanical Proper-
ties of Earth Materials. 3203 (11) Draft (Unpublished) Prepared
for the Defense Atomic Support Agency, Washington 25, D. D., under
Contract Nos. DA-22-079-eng-224 and DA-49-1L46-x2-030,



P~ Initial Mean Stress

do Initial Density

Stress, p—p,

ol — — - _—— -

Density, d—d,

Fig. 2.1 ASSUMED STRESS STRAIN CURVE FOR SAND
(after Grigoryan (2.3, 2.4))

7
6
2 &L Unloading
S N\
D "\
o 4} .
= Loading
E 4
. 3
2 ‘
o 2
|
o
7)) |
o ol
(o) 0.l 0.2 0.3 0.4

Strain

Fig, 2.2 ACTUAL STRESS STRAIN CURVE FOR SAND
{after Allen, et al (2,23}



18-

CHAPTER 3
THREORETICAL APPROACH FOR PREDICTING THE STRESS~-STRAIN
BEHAVIOR OF DENSE SANDE PRIOR TO PARTICLE CRUSHING
The stress-strain behavior of most materials in the stress

levels of interest may be assumed to approximately follow Hooke's law. If
the material is isotropic, the stress-strain relations can be completely

described by two independent elastic constants.
The discussion in the introduction to this report pointed out

the fact that constants could not be used to describe the stress-strain

Properties of a granular medium. It wvas shown that it is possible to
cbtain almost any stress-strain curve one desires by varying the stress
level, the state of stress, and displacement conditione at the boundaries.
Thus, there is no unique stress-strain relation for a granular medium.
This does not mean, however, that the stress-strain relations of certain
prescribed granular media under a given set of boundary conditions can-
not be found. The above merely indicates that, even for a greatly 1de&\1-
ized medium such as a uniform array of equi-radii spheres, the problem
of defining a stress-strain relation for a granular medium is a boundary
valued problem in particulate mechanics and any analytical study of be-
havior under changes in stress must adequately take into account the bound-
ary conditions.
A mechanics approach \for formulating the behavior of this type
of media must consider:
1. The equilibrium of each particle and the medium as a whole.
2. Certain geometrically admissible conditions on the deforma-
tions of the particles (i.e., a set of compatibility equa-
tions).
3. The relationships between the normal forces and normal dis-
placements and shearing forces and tangential displacements
at each contact point on a particle.
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4, The boundary conditions on the medium.

The non-linear partial differential equations vhich result
from even the simplest model of equi-radii spheres are extremely complex
and closed form solutions can be obtained for only a few cases. Since
some of the solvable problems, however, turn out to be basic ones, such
an spproach has a great deal of merit in adding to the understanding of
the behavior of granular materials.

This chapter reviews the formulation of the theory of Granular
Media eaccording to the ideas of Mindlin and Duffy and then presents a modi-
fication of the theory vwhich is appropriate for one dimensional compress-

ion.

3.1 The Mindlin-Duffy Theory of Granular Media

3.1.1 Basic Theory
The theory developed here follows that first formulated b&

Duffy, Mindlin (3.1, 3.2, 3.3] and their co-workers. The granular med-
jum 18 restricted to a face centered array of equi-radii spheres (Fig.
3.1). The face centered array was chosen primarily because this array
is one which provides for the densest possible packing. Eence; there is
no way in which compressible deformations of the medium can taske place
as a result of rearrangement of the particles.

Consider the behavior of two spheres pressed together by a
normal force. According to the Hertz theory, if two elastic spheres,
each having radius R, shear modulus H, and Poissons ratio V, are mut-
ually compressed by a normal force N, the resulting surface of contact

is a plane bounded by a circle of radius

1/3

. [maglﬂ!] (3.1)
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and the rate of change of the relative approach of the sphere centers,
a, with respect to the normal force N, is

Jda 1oy

¢ " o (3.2)

where C is defined as the normal compliance. Two spheres in normal con-
tact are shown in Fig. 3.2 while Fig. 3.3 shows the distribution of the

normal stress across the area of contact. A complete derivation of the

Hertz compliance and the assumptions and limitations of the Hertz theory
in regard to this study appear in Appendix A,

Suppose now that the system of like spheres, initially compressed
by a constant normal force N is subjected to a tangential force T which
acts in the plamne of contact and whose magnitude increase monotonically
from zero to a given value. Because of symmetry, the distribution of
normal pressure remains unchanged. If it is assumed that there is no
slip* on the contact, then, because of symmetry, the displacement of the
contact surface in its plane is that of a rigid body. The solution of
the appropriate boundary-value problem, due to Cattaneo [3.4) and Mind-
lin [3.5], yields the tangential component of traction T on the contact
surface and the tangential displacement, ®, of points in one sphere re-
mote from the contact with respect to similarly situated points in the
other sphere. The tangential traction is parallel to the applied force
T, axially symmetric in megnitude, and increases without limit on the
bounding curve of the contact area, Fig. 3.3. It is reasonable to sup-
pose that slip is initiated at the edge of the contact since it is

there the singularity in traction takes place in the absence of slip.
Since without slip this traction is symmetric, the slip is assumed to

* By slip we mean relative displacement of contiguwous points on a portion
of the contact surface. We distinguish between "slip" and the term

"sliding, " which we reserve to denote relative displacement over the en-
tire contact.
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progress radially inward, covering an annular area. On this annulus it
is assumed, as a first approximation, that the tangential component of
traction is in the direction of the applied force and is related to the
normal (Hertz) component of stress g, already present, in accordance

with Coulomb's Law of sliding friction. Hence:
T = fg (3.3)
where f 1s the coefficient of estatic friction and o is given by

1/2
o = 2N (2% - %) (3.3a)

2la5

Here p is the distance from the center of the contact circle.
The distribution of T vith‘elip is also shown in Fig. 3.3. Cattaneo and
Mindlin also predict the relation between the radius of the adhered por-
tion and the applied tangential force as

1/3

b= a(l - ?ﬁ) (3.4)

where b is as shown in Fig. 3.3 and where the tangential compliance at

the contact 1s given by

S = aT = Lra (x- %i (3.5)

Equation (3.5) bolds only for the case of an increasing T with
a constant N at the contact. In the problems we will consider in this
paper, T and N are both increasing so the tangential compliances appropri-

ate for this problem are given in reference (3.6] as
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. -1/3
s=gm1[f§—$+(1-f§—‘;)(l-%) ],os%sl/r (3.6)
or
s=gﬁ;!, g—’%z#t (3.7)

Let us now consider a face centered cubic array of uniform
spheres as shown in Fig. 3.1, vhere each sphere is in contact with 12
other spheres. A typical element of this packing is shown in Fig. 3.k.
If the coordinate system shown in Fig. 3.4 1s translated to the center
of any sphere, Fig. 3.5, the 12 contact points would have the following

coordinates in terms of the radius of the sphere.

x Y z X Y z
1. 0 + RN2  + rRN2 1. +’N2 -RrRN2 o
2. 0 - RN2 4+ RN 8. -’RN2 +RN2 o
3.0 -rRN2 - N2 9. +RrRN2 o0 + RN2
L0 +RN2 -®N2 0. -’RN2 o - RN2
5. +RN2 +RN2 o 1. -RN2 o0 + RN2
6. -RN2 -rN2 o0 12. + N2 o - RN2

There are two shearing forces and one normal force at each con-
tact point as shown on Fig. 3.5. In index notation it is convenient to
identify the various components of normal forces by the symbol, NiJ’
vhere the subscripts correspond to the planes in vhich the components lie.
The two tangential force components at each contact are chosen to lie in
and normal to the co~-ordinate planes, and are identified by TiJ’ and Tkk
respectively. At all contacts where the normal has direction cosines of
unlike sign the force components are further distinguished by primes.

Thus the components at the contact points 1 through 12 are:
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] 1) L}
1. N, T, Ty . N T T
] ’ 1] ' ] ]
2. N, T, T 8. Ny Ty T
3, N T, Ty 9. Mo Tz Ty
b, . | 3 10. | T T
- Yz Yz XX - XZ X2 YY
L} 1 L}
5. N Ty T u. N T Ty
t [ ]
6. Ny Ty Ty 12. N, T Ty

Let us nov consider the equilibrium equations of a representa-
tive cube (Fig. 3.4) due to an arbitrary initial state of stress imposed
on the medium. If an increment in stress is added to the initial stress,
the forces on the faces of the cube will be increased by corresponding
increments dPiJ' Let us determine the unknown increments of force at the
contacts between the spheres within the cube which result from the force
increments dPiJ' If the stress increment in the medium is homogeneous,
then the contact forces will be equal at contacts having corresponding
poeitions on the surfaces of the spheres, The contact forces diametri-
cally opposed on each sphere are equal, thus only 18 of 36 contact forces
on each sphere are independent. Not only must the cube as a whole remain
in equilibrium under the action of the increments in applied force, dPiJ’
but each sphere and each portion of a sphere within the cube must also
remain in equilibrium. Since the portions of spheres in the cube are
acted on both by applied forces and by contact forces, the equations of
equilibrium relate the increments in applied forces to the increments in
contact forces. By writing equilibrium equations for various octants of
spheres in the cube as shown in Fig. 3.6 it may be shown that there are
nine independent equations of equilibrium. These equations are the fol-

lowing:



).

1. war_ +al2 (N, + N -aT_ +aT )= dP_ + AR+ &P,
2, kT + N2 (AN +dN _-4dT_ +dT )= AP + AP _ + dP
& Yy vy Tyz Txy Uy wt Syt Ty
3, kT + 22 (dN +dN_ - AT+ AT )= dP__+ dP__ + dP
z2 Yz zx vz zx 22 zx yz
4L, 4T + N2 (aN'_ +dN_ - dT' + 4T )= dP__ + dP_ + AP
= xx zx xy = xy xx xy zx
5. 4T’ + N2 (4! +dR - 4T’ +4dT )= dP_ + dP - dP (3.8)
yy xy T Tyz T xy T Tyz w’' Ty T xy
6. L4aT' 4+ 2/2 (AN’ + dN_ - dT' + 4T )= AP+ P _ -~ dP
= zz yz = yz zx 2z zx ¥z
7. 4T _ - 2/2 (aN' + aN' - ar' +4aT' ) = -dP__ + dP_ + dP
xx zx xy zx Xy xx xy zx
8. 4T - 2/2 (4R’ + dR' - dT' + aT' ) = -dP,_ + dP__ + dP
= Yy xy © Tyz T Txy T yz w' %t Ty
9. 4ar - 22 (4! + dN' - 4T’ + 4T’ )= -dP__ + AP _ + dP
22 vz zx vz zx 2z x vz

The nine equilibrium equations given above are not sufficient
to uniquely describe the behavior of the medium since the problem is
statically indeterminate. A set of compatibility conditions are formu-
lated by giving consideration to the admissible displacements of the
medium which result from the incremental stresses. Let the components
of relative displacements of the centers of spheres be designated by
daij’ daij’ dskk’ to correspond, respectively, to the forces dnij’
dTiJ’ dik (Fig. 3.7). We will require that the displacements of the
center of the spheres be single valued, i.e., the vector distance around
the closed path through the center of the spheres must vanish both be-
fore and after the medium is strained. Hence the sum of the relative
displacements of the center of these spheres around the closed path must
vanish. Expfessions for this condition for all possible paths connect-

ing the center of a sphere in the medium yields 9 independent equations

of compatibility as follows:

1. Yodd_ = -da’ + da_ +db' + ab
= 2z yz zX yz zx
& Jédazz.- do&z‘ % dayz a5 5
3, VJ2ab' = -da_+da_ +d8 4+ ad
2 yz X yz f~ 4
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b, V245 = ' + d4x_ +db' + ab
= xx zx Xy zx xy
- [] - - ]
5. W 26, = 4o -dop -4 - &bl (3.9)
6. Y2a8' = da_ - da_ +dd _ + ad
= xx z Xy zx xy
7. Jadb_ = da' 4+ da_ + ad' + db
vy xy vz  Sxy " Tyz
8. Vodb = aax - aa' -adb - ad'
= Yy xy vz oxy ~ Tyz
9. Joas! = <da_ 4+ da_ +db_ + dd
4 xy vz T Ty T Ty

The compatibility equations can be written in terms of force

increments by using the compliances

%y = Cyyyy dayy = 5y,
d51J = sin'ri‘1 d&id = Siad'ri.j (3.10)
dbkk = sn“u dﬁl;k - s)';kd'n;k

Where the subscripts identify the contect. Thus Eq. (3.9) together with
Eq. (3.8) yield 18 independent equations containing the applied forces
ap, 5 and 18 independent components of the unknown contact forces, dN 1y
dTi 8 and d'r.n. Unfortunately, however, these 18 equations are non-lin-
ear since the equations include the compliances and the compliances are
themselves functions of the contact forces. Consequently, a solution to
these equations is a very difficult problem and can be obtained only for
certain simple cases.

The incremental extensional and shearing strains in the array,

expressed in terms of the compliances, are

1 ' '
de,, = = (da“ + dbi,j + da"J + dbu)

(3.11)

- 4! )

1
a7y, = 75 (Ao, 1

Likewise the applied force increments P,, in Fig. 3.4 are related to the

1)
stress increments for a face centered array by
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23
ap,, = 8R do, 4 (3.12)

3.1.2 Application to a Hydrostatic State of Stress

Opne problem of interest which can be solved is that of a face
centered array subjected to a hydrostatic state of stress. Under this
state of stress we can obtain from symmetry the conditions that all norm-
al forces at the contacts are equal and all shearing forces are equal.

If ve let
P = total force on the face of a differential element
N = normal contact force
T = tangential contact force
R = redii of spheres

the equilibrium Egs. (3.8) reduce to
Mar_ + ufédno = P (3.13)
4T - WodN = ap
o] (o] o]

Adding Eqs. (3.13) and considering the initial condition of zero stress

yields the expected condition for the tangential force
T =4T =0
o

(o)

Hence, the equilibrium equation becomes

AN = 23— ap (3.14)

If ¢ 18 the hydrostatic strain in eny direction, Eq. (3.11)

yields

de, = Zx 4% (3.15)
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vhere dﬂo is the normal deformation due to dl!o and is related to dllo by

the normal compliance co.

da_ = C_dm (3.16)
From the Hertz theory
l1-v
c, = Ty (3.17)

vhere a, is the radius of contact defined by

- T (3.18)

3(1 - v) BR ;/3
“- ]
By combining BEqs. (3.15), (3.16), (3.17) and (3.18), the incremental

strain may be expressed as

[} o o

of3 .
ac, = 1/2 [M] o0 ™" e (3.19)

Integrating Eq. (3.19) and considering zero initial conditions results

in
. - [1‘—5;)-—1" ’f?-] a°2/3 (3.20)

It slhgu\ld be noted that Eq. (3.20) 1s also the equivalent of the first
stress mv.a.ria.nt I, being proportional to the three halves power of the
first strain invariant J.

It is of interest to compare the results of this theory with
some limited experimental results available in the literature. KJellina.r:-
(3.7] cerried out some tests on dry sand subjected to hydrostatic pres-

sure and measured the strains associated with the pressure. Table 3.1
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gives the variation of the first stress and strain invariants taken from
his experimental results. A plot of this is shown in Fig. 3.8. Also
shown is a plot of the exponential relationship indicated by the theory
discussed, vhich is fitted to the experimentsl curve at the 6 kg/cm®
stress level. The behavior of the sand is not as stiff as the dense
packing theory indicates in the lower pressure regions while it becomes
stiffer than the theory predicts in the higher pressure regions.

The former seems reasonable in that in the lower pressure reg-
ion the number of contacts is not as large as the 12 assumed for a dense
state. Hence the real sand is not as stiff as the spheres. In the high-
er pressure regions, it seems reasonable to associate the stiffening
effect with the random size distribution of particles which differs from
the equi-radii spheres assumed in the theory. If the sand grains are
of different sizes, more than 12 contacts camn be realized after the sand
has been compressed sufficiently to allow these contacts to be made,
This would tend to make the sand stiffer than the spheres. Furthermore,
vhile every attempt was made by Kjellman to minimize the effect, any
frictional resistance due to the testing apparatus would effectively
stiffen the measured stress-strain relations.

From the above discussion and development, it can be concluded
that the theory associated with the face centered array of spheres shows
at least some qualitative correlation with the behavior of dense sand

subjected to a hydrostatic state of stress.

3,2 One Dimensional Theory of Granular Media

3.2.1 Monotonically Increasing Load

Let us now extend the theory of Duffy and Mindlin developed in

Section 3.1.1 to the solution of the stress-strain behavior of an array
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of spheres subjected to one dimensional compression. One dimensional
compression is defined as that state of stress resulting from the appli-
cation of a load in the vertical or z direction when the lateral strains
in the x and y directions are zero.

The radiasl symmetry of the one dimensional problem greatly
simpiifies Eqs. (3.8) and (3.9). The representative cube now becomes
Fig. 3.9, and the forces on a sphere reduce to those shown on Fig. 5.1C.
From symmetry the following simplifications can be made for the forces

and displacements:

N = N =N

xy xy 1

N = N =N =N =N

zy yz X X 2
T =~ =T =7 =7

Yz Yz 2x z 2

' = = ' = ! = 2

T Ty Tyy 'ryy T, * T, =0 (3.21)
T = T =0

Xy Xy

P = P =P =P =P =P =0

Xy Xz zx yxX yz y

P _ = Pyy = PH

K

"
o—
"
e
(]
Q—
N
e

Yz zX b A 2
5 =-3' =5 =08 =28 (3.22)
Yz Yz zx 2X 2
= 8' =29 = ®' =290 =®' =0
XX xx Yy Yy 22 z2
6 = ' =
Xy Xy

Furthermore, the associated compliances now become

C. = C' =¢C
xy xy 1

= ' = ! = 5
Cy, cyz .= Coy = s (3.23)

S = S' = S :S' = S
vz zx zx

yz 2

S
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Using the above simplifications and considering symmetry the

equilibrium Eq. (3.8) reduce to .

V2
dNQ + dTE -y szz

(3.24)

V2
dN, + 4N, - 4T, = T dPp

In & similar fashion the compatibility Eq. (3.9) reduces to
Q. - 4o =
da; - 4o, + d62 0 (3.25)

where the compliance Egs. (3.10) now become

da, = CaN,
f
a = R
da, = C,dN, (3.26)
do, = 8,dT,

Substituting Eqs. (3.26) into Eq. (3.25) yields

C,AN, - C,dN, + 5,dT, = O (3.27)

Ejuetions (3.24) and (3.27) are sufficient to describe the be-
havior o1 a granular medium subjected to given vertical and lateral forces

P and t

. H If, however, only the vertical force is known and the lateral

force must also be determined, a further condition 1s necessary. This
condition naturally comes from the lateral strain relationship.
Due to symmetry the lateral strain e, determined from Egs. (3.11)

reduces to :

de, = —= (3.28)



or
B 2R (3.29)

Thus the behavior of a face centered array of spheres subjected
to a vertical force gz and restricted to symmetrical lateral deformations
can be obtained from a solution to the following equations:

Jo
dN, + dT, = F P ,

Vo
dN) + dN, - dT, - 75 dP, = O

(3.30)

For the case of interest here, namely one dimensional compress-

ion, we require €, to vanish for all loadings. For this particular stress

H
state and zero initial conditions, we obtain N, = 0 and Eqs. (3.30) re-

duce to
Vo
aN, + dT, = F dP_ (3.31a)
dN. - ar -Jedp =0 (3.31v)
2 2 T H :
S,
aN, - 6'2' T, = 0 (3.31c)
S,
where the expression for & is obtained from Eqs. (3.6) and (3.7) as:
2
S aN an T -1/3
2 2 2 2
--=k[f—+(l-f—-—)(l-——) ] (3.322)
C, 1" aT, aT, I,

where



k) = 53y (3.32v)
The compatibility Eq. (3.3lc) states that

= dd
da2 d 5

Hence for the one dimensional case Eq. (3.32) reduces to

daa C.4N
2 22
de . = R = R (3.33)
It should be noted that Eqs. (3.31) are coupled non-linear
differential equations because of the compliances in the third equation.
The vertical strains ezz associated with the behavior of this

medium can be obtained from Eqs. (3.11) as
de_ = == (aa, + db,) (3.34)
zz 2R 2 2 y
For the solution of Eqs. (3.31), let us consider first the com-

patibility Eq. (3.31c). Substituting Egs. (3.32) into Eq. (3.31c) yields

after some rearrangement of terms

aT 1-k £ o, 3
et (1- ) (3.35)
2 1 2

P =p -2 (3.362)



dnzz? + N2(3) 7742 = faN_ - 4T

2 2
or
4aT
2 dzZ
Eﬁ; =f-2 - 3N, 72 Eﬁ;" : (3.36v)
Using Eqs. (3.36), Eq. (3.35) can be transformed into the fol-
lowing form.
dN, A
-z 2 (3.37)
VAREY ¢ 2
2
where
l-klf
K, = ;—]73 (3.38)
1
Integrating both sides results in
In N, -1nA=-3/2 (£ +K)
or
N -3/2
£=(Ff+x) (3.39)

vhere A is a constant of integration.

From Eq. (3.36a), Eq. (3.39) becomes

2.
A 2

- T, 2/3 -3/2

(-2 +x,)] (3.40)
2

Equation (3.40) is the general solution to Eq. (3.3lc) and a

particular solution may be obtained by evaluating the constent of integration
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A. Since we are interested in the initial conditions I;z= Né = T2 =0,
one is inclined to evaluate A from these conditions. While this 15 a
true boundary condition, a singularity point occurs at the origin. The
equation is, however, well behaved at other points and the following
techinigue will be used to evaluate A,

Imagine a small hydrostatic state of stress initially hoiding
tlie spheres in contact before the one dimensional state is imposed. This
tydrostatic stress produced no initial tangential force at the contacts

but it does cause a normal force of Np = No.

From Eq. {(3.40)
_ a2/ -3/2
N, = A(f + Ke)

or solving for A, the constant of integration

N
O
A= (x2 - ;§73)_3/2 (3.41)

Substituting A into Eq. (3.40) ylelds after some rearranging

and taking into account Eq. (3.38).

T, = N, [1 -<Hl(1—{(;z-)2/3 -1] + 1>3/2} (3.42)

A plot of & family of curves representing Eq. (3.42) with var-
ious values of the initial hydrostatic stress No is given in Fig. 3.11.
The paths of loading are indicated by arrows on the curves. For conven-
ience the coefficlent of friction f was taken as 0.3 and Poisson's ratio

v as 0.2.
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If an initial hydrostatic stress is imposed we can determine
the value of N2 when the sliding occurs. For this condition we see that

from Eq. (3.42)

_1_[ N£)2/3

-1 ] +1=0
2

Rewriting and taking account of (3.32b) yields

N_ = (3.43)

The reader will recall that we were initially interested in
defining the relation between N2 and T2 for a granular medium in a one
dimensional state of stress which was loaded from an unstressed condi-
tion. We noted that the solution contained a singularity at the zero
stress and it was necessary to provide an ieipigibhydrostatic stress
No to hold the spheres in contact vwhen loading. If we now allow No to
approach zero we obtain the solution desired.

On investigating Fig. 3.11 or Eq. (3.42) it is clear that if
one dimensional loading commences from a completely unstressed condition
(No = 0), the relation between N, and T, 1s that of a straight line with

a slope of l/f. Thus, the relationship between N, and T2 for a face

2

centered array subjected to one dimensional compression is

This means that sliding‘(differentiated from slip in Section

5.1.1) at the contacts occurs immediately on initiation of loading. This
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is extremely important in that the theory developed to date along the
lines of Mindiin, et al, does not allow sliding at the contacts. ‘The
authors, however, will show in the following that the stress-strain rela-
tion ships in the one dimensional granular medium can be described mathe-
matically even though sliding occurs throughout the application of a
monotonically increasing load.

From compatibility, even in the case of sliding, the geometri-

cal relationship still holds for the displacements at the contacts, i.e.

d(l2 - d82 =0 (3.uk4)

It should be clear, however, that the tangential displacement
52 is no_longer related to the tangential contact force T2 by the tangen-
tial compliance 52 because of sliding at the contacts. The tangential
displacement is now made up of two effects, a sliding effect and a con-
tribution due to slip. On the other hand, the normal forces and dis-
placements are still connected by the compliances.

Furthermore, since Eq. (3.44) is a geometrical relationship,

it holds as well for total displacements in the problem at hand. Hence,

a, =3, (3.45)

The vertical strain Ey. (3.33) is also geometrical and can be

used to obtain the strain for the medium.

da, CdN
de = —2 m 2=t (3.46)

2z R R
Next we note that the equilibrium Eqs. (3.31a) and (3.31b),
vhich were originally written in terms of differential stresses, also

hold for total stresses. Hence




J2

Ny+ T, = R, (3.478)
J

NQ-TQ--,?-PH:o (3.470)

We have already determined that N2 and T2 are connected by the coefficient

of friction throughout the entire loading, i.e.

N, - T,=0 (3.47c)

The behavior of a granular medium of face centered packing
subjected to one dimensionsal compression can now be described by Egs.
(3.u4), (3.54), (3.46), and (3.47).

Equations (3.47) may be combined to eliminate T, resulting in

N2(1+f) = 4-5@ P (3.488)
N,(1-f) = ‘4‘3 Py (3.48p)

In theoretical and applied soil mechanics a quantity of major
interest in one dimensional compression is Kb, the ratio between the hori-
zontal and vertical stresses at rest. From Egs. (3.48) this ratio is

clearly

(3.49)

Some indication of the variation of Kb with the coefficient of friction
f is shown in Table 3.2,
Iet us now determine the strains resulting from one dimensional

compression. The substitution of Eq. (3.2) into Eq. (3.46) yields
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-1/3
‘ aN,, {3.50) .

eyt

Combining Eqs. (3.50) and (3.48a) and poting from Fig. 3.9 that

22
o, = =3 (3.51)
gives v 2/3 _1/5
Y
de = % [“l TiF 2 ] [3/8 ozz] do_, (3.52)

Integration of Eq. (3.52) yields

1-v Jp
€ZZ. = [“ 1+f ] 20z,z (5-53)

An interesting result of Eg. (}.55) is that the stress-strain
behavior is independent of the radil of the particles. A comparison of
the stress-strain curves for hydrostatic and one dimensional compression
shows that the curves are similar in shape, but turn up at different
rates. The ratio of the one dimensional strain to the hydrostatic strain
at the same level of stress, g, is a ratio of Egs. (3.53) to (3.20),

which reduces to

€ P!
Eoﬂ ERWSEE 50

Values _of f of 0.1 and 0.2 give values for ezz/eo of 1.88 and 1.77, res-
pectively. This indicates that the hydrostatic and one dimensional stress- -

strain curves are related as shown in Fig. 3.12.




3.2.2 Unloading Cycle

When the medium is loaded the tangential forces tend to resist
the sliding motion. For unloading the tangential forces tend to resist
the sliding movement which is now in the opposite direction. Hence, the
tangential forces reverse their direction on unloading. These two cases
are illustrated schematically in Fig. 3.13. The normal and tangential
forces are still related by the coefficient of friction; only now the
direction of the tangential force i1s changed.

The nev equilibrium equations become

J2 .
KN, -T,=FE,
(3.55)
N
N2+T2=TPH
where
fN, - T, = 0 (3.56)

»
Consider the medium to be loaded from O to 0, Fig. 3.14
according to Eqs. (3.53). If equilibrium Eqs. (3.55) become velid at
*
the instant €.z begins to decrease from €, then 9, will decrease in-

* 1
stantaneously from %, to some value g,.. At the end of loading N2 and

*
0 _ are related by
2z

Q%

- § S3f) (3.57)

zZz 2,JéR2

'
whereas the stress %, is related to the contact forces by Eqgs. (3.54)

and Eq. (3.51) by




. N, (1-r)
- (3.58)

g
22 JéR2
* 1]
the relation between ozz and %, at the instant where ezz Just begins
to decrease vwhen the value N2 has essentially the same value while the

shearing stress has switched directions is

' * l-f
%22 % %22 (T:?) (3.59)

Combining Egs. (3.55), (3.51), (3.46) end (3.2) yields for unloading

l-v 2
de_ = 1/2 [ R G J [3/8 ozz] do (3.60)
vhich by integration becomes
2/3 e/3

€22 © [L%:%%:%f£%] 29,2 (3.62)

The entire stress-strain history for one cycle of loading in
»*
one dimensional compression is shown in Fig. 3.14 in terms of °zz and

9,z The derivations above are based upon the assumption that the tan-
gential contact forces immediately reverse directions when unloading
begins. This assumption is not gquite true, however, since each sphere
must exhibit a small elastic tangential displacement before the tangen-
tial forces can change direction. This effect however, is small with
respect to the tangential displacement due to sliding, and was neglected

in the analysis. Due to the above assumption, the stress-strain curve

rerlects a vertical drop in stress from A to B without any change in
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strain., If the small elastic tangential displacement due to slip were
accounted for, the stress-strain curve would not have a cusp in it at
B, and would follow the dotted line shown in Fig. 3.1k4.

The stress-strain behavior shown in Fig. 3.1k4k exhibits an
energy loss after a cycle of loading and unloading but has no residuel
strain. Hence, this medium can absorb energy without any permanent
displacements.

3.2.3 Energy Absorption

The amount of energy absorbed by the medium on loading and

subsequent unloading can now be determined.

The energy El required to load up to an applied vertical stress
of Py and the strain of el is
‘1
E) = f g zzdezz

()

(3.62)

5/2

4
E = 3 (1+¢) €

The energy tesken out of the medium E2 during unloading back to

zero from & stress of 02 and strain el is

E, = % (1-£) e15/2 (3.63)

Thus, the energy lost is

5/2

AE = E, - E, = = fe. (3.64)

\Njco
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Likewise the ratio of the energy loss to the energy input is
LE 2f
= -2 (3.65)
1

Thus, a very significant property of the one dimensional stress-strain
curve 1s that the per cent of energy ebsorbed due to loading and unload-
ing is always constant for a material and depends only on the coeffici-
ent of friction at the contacts. Hence, the ratio of the area between
the loading and unloading curves to the area under the loading curve is
a constant given by Eq. (3.65). The per cent energy absorbed for var-
ious coefficients of friction is given in Table 3.2.

In summary it should be clear how the contact forces and en-
ergies associated with this medium are connected. The work done by the
normal forces during deformation\/“NedC!2 is stored in the form of re-
coverable strain energy. On the other hand, the work done by the tan-
gential forces\/\T2d§218 a nonrecoverable energy and is dissipated as
heat into the medium. As seen from Table 3.2 this energy loss during
one cycle can be quite significant. In fact, with a coefficient of
friction of 0.15, the dissipated energy is 26.1% of the energy put into
the system.

3.3 Equivalent Discrete Mass Model for One Dimensional Static and Dynamic

Behavior
In recent years, an increasing effort has been devoted to study-
ing the static and dynamic behavior of soills using discrete mass-spring
models. These models have taken many shapes with various contributions -

from models such as the standard Voigt and Maxwell models. These model
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studies have been particularly useful in wave propagation studies, such
as the work of Smith and Newmark [3.8)]. The dynamic equations of motion
can be integrated numerically with a digital computer using the B-method
(3.9) and it is a fairly straightforward approach to modify soil pareme-
ters or spring stiffnesses as the need arises.

As might be expected from such an approach, there are certain
aspects of the soll behavior which escape the mass-spring model. Part
of this inaccuracy is due to the discreteness of the system and part can
be attributed to cholce of the model itself.

A study of the problems associated with the choice of various
models for investigating the propagation of stress waves in a one dimen-
sional medium has been carried out by Murtha [3.10j.

In spite of the inherent difficulties associated with the use
of models, there are some cases where the model is the only hope and in
fact can be a very valuasble tool. For that reason the authors would
like to suggest a one dimensional model which seems to exhibit the be-
havior expected of dry cohesionless sand, and is based upon the theory
presented in Section 3.2.

If & pressure on the surface.of the earth extends over a large
enough area, it may be reasonable to consider soil completely confined.
If this is valid and if the soil composition 1s similar to sand, the one
dimensional behavior discussed herein may very well be a good approxima-
tion to the in situ soil behavior.

3.3.1 Horizontal Model

Figure 3.15 gives a model representation of the sphere system

developed in Section 3.2. This model yields the same stress-strain cur e




ally-

as the spheres for a static load as the load increases or decreases, and
the equations of equilibrium in the limit approach those of the spheres.
The model consists of non-linear spring elements and Coulomb damping ele-
ments which dissipate energy in the same way as the spheres. The reason
that it depicts horizontal behavior is that there are no initial stresses
in the model before the load is applied. Such an assumption might be
reasonable for a vertical column if the weight of the soll can be neglect-
ed compared to the applied stresses.

3.3.2 Vertical Model

The vertical model is slightly more complex than the horizontal
one in that the weight of the material produces initial stresses in the
model. Since the stress~-strain curve for the material is non-linear, the
stiffness is a function of the stress, and consequently, a function of
the height of overburden. The overburden pressure increases linearly-
with depth and it can therefore be incorporated in the equations of mo-
tion.

A verticel model which includes the initial stresses due to
the overburden of the material is given in Fig. 3.16. It includes a
change in stiffness associated with the increased initial stress and fol-
lows the stress-strain behavior consistent with the analysis of the

sphere medium in Section 3.2.
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TABLE 3.1 VARIATION OF STRESS AND STRAIN INVARIANTS

(From Kjellman [3.7))

I/k = % (c7l + 0, + 05) av/v = (el + €, + ej) =J; Jl/}
kg/cm® 10'21“/1n. 107 in/in

1 0.12 0.0k

2 0.24 0.08

i 0.38 0.13

6 0.47 0.16

& 0.54 0.18

10 0.62 0.21

12 0.69 0.23

=~
[t}

First stress invariant

First strain invariant

o
I



b

TABLE 5.2 EFFECT OF THE COEFFICIENT OF FRICTION ON
ONE DIMENSIONAL STRESS-STRAIN BEHAVIOR OF
FACE CENTERED ARRAY OF SPHERES

£ K OE/E) x 1005
;—(l'ﬁff- % x 100

0 0.5 0

0.05 0.45 9.5

0.10 0.4 18.2

0.15 0.37 26.1

0.20 0.33 33.3

0.25 0.30 Lo.o

0.30 0.27 b6, 2

f = coefficient of friction at contact points

B T

= coefficient of earth pressure at rest, pﬂ/pz

x 100% = precent energy absorbed due to loading and unloading
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Fig. 3.2 TWO SPHERES IN NORMAL CONTACT
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Fig. 3.3 DISTRIBUTIONS OF NORMAL (¢} AND TANGENTIAL (1)
COMPONENTS OF TRACTION ON THE CONTACT SURFACE
OF TWO LIKE SPHERES SUBJECTED TO A NORMAL FORCE
FOLLOWED BY A MONOTONIC TANGENTIAL FORCE

(after Mindlin).



—-Y

Fig. 3.4 UNIT CUBE OF A FACE CENTERED CUBIC ARRAY OF
EQUAL SPHERES SUBJECTED TO INCREMENT FORCES
AFTER REF. 3.3
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Fig. 3.6 FORCES ACTING ON AN OCTANT OF A SPHERE
(Octant Shown Here is Located at Origin
in Fig. 3.5)
AFTER REF, 3.1
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Fig. 3.9 UNIT CUBE OF A FACE CENTERED CUBIC ARRAY OF EQUAL
SPHERES SUBJECTED TO INCREMENTAL FORCES IN ONE

DIMENSIONAL COMPRESSION



Z
. T
Nyz yZ
Nax
N, T,
\" e
P
7
Ny
Tox
/ Nzx
// N.
t yz
Nyz Tyz . 7 Tyz
N

ZX

Note That Due To Symmetry

Tox = Tax = =Ty 3=Ty = T,

Nyz = Nyz = Ny =Ny =N,

Nyy = Ngy = N,

Fig. 3.10 FORCES ACTING ON A TYPICAL SPHERE SUBJECTED
TO ONE DIMENSIONAL COMPRESSION



‘
1
o
O

Ki® 2'('_” /
1 A/

® )
1/
Ny
> /
N 4 / /
c. N (
o, P / -
e 7
Pl
z A
yd
7
|4
/
% 0.5 1.0 18 2.0 25

Tangential Stress, ty

Fig, 3.11 VARIATION OF CONTACT STRESSES UNDER ONE DIMENSIONAL
BEHAVIOR WITH AN INITIAL HYDROSTATIC STRESS




4/

Hydrostatic

One Dimensional

A

VERTICAL APPLIED STRESS, ¢

2

VERTICAL STRAIN, €
3z
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(a) Unloaded State

(b} Loading Cycle (c) Unloading Cycle

‘Fig. 3.13 SCHEMATIC REPRESENTATION OF THE DIRECTION OF THE
CONTACT FORCES WHEN LOADING AND UNLOADING UNDER -
ONE DIMENSIONAL COMPRESSION
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CHAPTER 4

EFFECT OF GRAIN CRUSHING ON THE BEHAVIOR OF SANDS

4.1 Introduction

Typical stress-strain curves for a granular material such as
sand subjected to static loads in one dimensional compression are shown
in Figs. 4.10 - 4,14, The general shape of thease curves has been quali-
tatively discussed in Chapter 1. The purpose of this chapter is to make
some evaluation of the energy absorbed by the sand in the pressure ranges
where crushing of the grains tekes place. One should note that this is
only one or the mechanisms by which the sand absorbs enérgy; however, en-
ergy absorption in this region can be very significant.

The energy absorbed by crushing will be evaluated by determin-
ing the new surface area created as a result of crushing. The increase
in new surface area will be determined from a statistical evaluation of
the change in the grain size distribution curve for each pressure range.
Since new surface area can be related to energy absorbed in the crushing
phenomena, then energy absorption due to the creation of new surfaces
can be related to the changes in the grain size distribution curve. The
results of this analysis led to additional studies of stress-strain
curves for sands in the crushing region, which showed that the total en-
ergy absorbed due to particle crushing 1s linearly related to the stress.

4.2 Energy Absorbed Due to Crushing

4,2,1 Statistical Eveluation of Grain Size Distribution Curve

Since the change in the grain size distribution curve for a
sand 1s a measure of the change in the particle sizes, and consequently,

the change in the surface area of the particles, it is also a measure
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of the energy absorbed by the sand due to crushing. Since each group
of particles is in some sense a random accumulation of these particles
and, furthermore, since the crushing of the particles will tend to oc-
cur in a somevhat random fashion, it would appear that an investigation
of the statistical distribution of the particles and certain geometric
parameters is required.

To follow this thesis, the concepts presented by Orr and Dalla-
valle [4.1, 4.2) will be followed. It will be shown how certain statis-
tical measurements of a group of particles may be used to obtain useful
parameters which characterize the distribution of these particles.

If the particles are all spheresw(or very nea?ly 80) the aver-
age surface area S may be computed from the mean linear dimension ds'

Hence

L 2
S = —f—d-> = Id2 (h.l)
n 8

vhere
f = frequency vith which a particle diameter d occurs
n = total number of particles (m=Zf)

Likewise, the mean volume V is

BHCO (2

If due allowance is made for weighting of size and frequency,

then better statistical averages would be

g - .<§§—d>2. xa;? (5.3)



[N

3
vep(R) - 8e) (1.4)

where d; and d; are denoted the mean surface and mean volume diameters,
respectively. If the particles are not spheres, then suitable correc-

tion factors celled shape factors must be used; i.e.:

" Lfd\ ,2
s = as <_n-> = as ds (h.5)
3
" Zfd I}
V' a <sz(-——n ) = av dv (4.6)

Here as and O; are the surface-area and volume shape factors, respec-
tively. Equations (4.5) and (4.6) are the correct equations to use 1if
the particles are irregularly shaped.

Some typical values of G  and @ taken from (4.2), p. 27 are:

Qa Q
8 v
Cube 6 1
Sphere x 2/6
White Sand (smooth) 2.1-2.6
Filter Sand (smooth) 2.7-2.9
Crushed Quartz 2.1-2.5 0.14-0.28

In general, it should be noted that while there is 8 somewhat large varia-
tion in G and @, studies have shown that the ratio as/av is usually in
the range of 6 to 7 and closer to 6.

It is sometimes of interest to determine the specific surface
area Sv defined as the surface area per unit volume of the material, or
sometimes the surface area per unit weight Sw‘ If the particles are all

spheres, these turn out to be



5, = g » (4.7)
(4.8)

vhere P is the density and ds is a dlameter characteristic of specific
surface areas as shown in Eq. (4.1).

By investigating Eqs. (4.3) and (4.6) it is seen that these
equations weigh heavily in favor of larger particles., This is good for
volume or mass averages, but for surface areas the finest particles be-
come more significant. Hence the surface area computed by these eque-
tions is too lowv. To overcome these effects and to obtain a better
statistical representation, the following procedure is useful.

Let y represent the volume or weight fraction of all particles

measured having a particular diameter 4. Then

3
y = %15 (4.9)
and
d = Zyd = El‘t (4.10)
v ££a’

vhere dv is a mean weight or volume diemeter of the distribution. It
should be noted that this diameter is lérger than that calculated from
Eq. (4.4), since the contribution of the larger particles is emphasized
by it.

Nov let the weight specific surface be denoted by S; and the

specific surface be denoted by Sv. Then



Lta’s' o)
S =L8'y = ‘ k.11
v W Lrad
From Eq. (4.8) we have
3
dgw = _g__ = 62§d (k.12)
pw pLfd’s’
w
Since S; = 6/pd there results
3
z
" ;%g (.13)

The usefulness of Eq. (4.13) is that it eliminates the use of
shape tactors. Equation (4.13) could have also been obtained by divid-
ing Eq. (4.6) by Eq. (4.5). Hence d_, 1s the diameter to use to obtain
the surface area per unit volume and this quantity is merely 6/dsv'

Let us novw consider the frequency of an occurrence. Thus far
we have been dealing with measures of a central tendency of an event
happening; however, in most cases, the particle size distribution will
be skewed in the direction of increasing size. (Or at least this is
what 1s to be expected from & random sampling of particles). These
distributions can be normalized, however, if the size is plotted logari-

thmically. Thus the frequency f with which a particle of diameter d

occurs 1is:
P In exp | - ln 4 ; ln M
Jox 1n o 2 In° o (4.14)
g g
where -

M = geometric mean diameter

08= geometric standard deviation




These are defined by

1nu=z¢%2) (4.15)

2
o, - \/Qu___le_nz (4.16)

As will be seen later, these quantities can be obtained easily
by graphical means from the grain size distribution curve. Furthermore,
these quantities can be related to the other statistical dimensione as

follows where the logarithms are to the base ten:

log df = log M + 4.605 log” o (4.17)
log d;j = log W 4 10.362 log2 o (4.18)
log 4 = 1og M + 5.757 log® o (4.19)
Also 1if
d = mean diameter of distribution
B 4
d = mean weight or volume distribution = Efd
v £rad
there results
d_ = log M + 1.151 log® o (4.20)
4, = log M + 8.059 log® o (4.21)

The above equations beginning with Eq. (4.17) are called the
Hatch-Choate equations, and can be very easily applied to a specific

distribution to obtain any of the various statistical parameters {4.3].
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4,2.2 Graphical Determination of the Geometric Mean Diameter and

Standard Deviation

If the distribution curve for a group of particles follows
fairly well the distribution given by Eq. (4.14), the plot on a log
probability grid of particle size versus cumulative percentages (or
fractions) less than (or greater than) a specific size results in a
straight line.

On this plot the size corresponding to 50% is the geometric
mean diameter M. Likewise the value of the geometric standard devia-
tion o, can be related to the sizes at 84.13%, 50%, and 15.87% as fol-

lows:

84.15% size 50% size
9% " 504 size = 15.87% size (4.22)

4.2.3 Particle Size Measurements Using Sieves

The above indicated procedure would be quite simple to apply
if it were known what the number of particles are in each size category.
Unfortunately, this is not the case with sand vhen the segregation meth-
od is carried out by means of sieving. When sieving 18 used the results
are given in terms of percent passing (or retained) by weight and not
number.

If weight percentages are used and the plot is made on the
log probability curve the result will still plot as a straight line if
the distribution follows Eq. (4.1L).

On this weight plot we define the median and standard devia-

tion as
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M' = 50% size

o = 8k.13% - size
8 5 15.87% size

It can be shown [4.1] that these values are related to M and

(h.23)

log M = log M' - 6.908 log” % (4.2k)

Hence the statistical diameters of interest can he obtalned as

log d_ = log M' - 5.757 log" 9 (4.25)
log d; = log M' - 3.454 1032 9% (4.26)
log d; = log M' - 4.605 1032 o (4.27)
log 4 = log M' - 1.151 1og2 % (4.28)

In summary it should be noted that the items of interest in
determining only the surface area for a quantity of particles do not in-
clude all of the statistical diameters given in the above discussion.
Since d'v is & measure of the surface area per unit weight it is the
only diameter of interest for this study. The other quantities are in-
cluded only for completeness.

The procedure for determining the surface area per unit volume
of a material is to meke a weight plot on & log probability graph and
from it determine the median and standard deviation according to Egs.
(4.23). From this information d_, can be obtained using Eq. (4.28).

The surface area per unit volume Sv and the surface area per unit weight

S, are then
w



6

8, = 37— (4.29)
8V
6

Sv = 5a (4.30)
8V

Since Eq. (4.29) relates to the volume of the actual solids,
it can be related to the volume of the loose material by proper use of
the void ratio e of the material.

4,24 Energy - New Surface Area Relationship

In recent years rather extensive studies [4.4 - 4.12] have been
carried out to determine the energy required to create new surface area
vhen certain solids are crushed. These studies have been carried out on
such materials as quartz, glass, florite, halite, and labradorite. The
materials were subjected to both static loads and also dynamic effects
created by dropping weights on the material. Very closely controlled
measurements vere carried out to determine how guch of the energy input
was actually used in the crushing of the solids.

Considerations were given to temperature changes, deformations
of the loading apparatus and any other significant energy absorbing mech-
anisms. In general, it was assumed that the materials did not undergo
plastic deformation before crushing, but only exhibited elastic effects
up to the point of fracture. It was felt that this assumption was Jjusti-
fied for the materials noted above, since under normal temperature condi-
tions they have little ductility.

In order to determine the surface area of the materials, studies

were first carried out using methods of permeametry as discussed in f4.1].
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This is done by investigating the resistance offered to a flowing fluid
by packed particles in accordance with the flow laws of D'Arcy. In some
cages the fluid used vas water; however, for smaller particles the use
of air in place of a fluid is advantageous. The permeability method for
measuring surface area has the advantage of being a relatively simple
procedure to carry out; however, it has the disadvantage that it mea-
sures only the outside surface of a solid. Such things as cracks, fis-
sures, and pores of microscopic and submicroscopic sizes are not de-
tected by this method.

In view of the above, further studies in this series used gas
adsorption measurements to determine the surface area of the solids.

This technique is also discussed in (4.1) and 1s based on the idea that
the surface molecules of a solid are bound on one gide to inner molecules
but are incompletely attached on the outside., In order to satisfy the
resulting unbalance of atomic and molecular forces, the surface molecules
attract gas, vapor, or liquid molecules. If the molecules attracted are
those of & gas, the phenomenon is known as gas adsorption. It is gen-
erally felt that gas adsorption measurements provide the best means cur-
rently available for determining total surface area of a solid,

In simple terminology, ges adsorption techniques involve a de-
termination of the quantity of a gas necessary to form a molecular layer
on the surface to be measured. The number of molecules required to form
this layer may be evaluated, and since the area occupied by each molecule
is known (or may be estimated), the surface area of the material may be
calculated.

These basic techniques hé.ve been applied to the crushing of

single particles as well as arrays of particles for some of the materials
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noted above (4.4 - 4,12). Some variations were made in the loading tech-
niques with dynamic as well as static applications. Two graphs summariz-
ing some of the significant data related to the behavior of quartz were
taken from [4.12] and are given as Figs. 4.1 and k4.2,

From these results it can be seen that the new area per work
input was measured as about 15.1 cme/kg cnm in single particle crushing
compared with about 13.8 cmz/kg cm for multiple particle crushing. The
higher energy required to crush a bed of particles has been attributed
to the fricticn energy losses which occur when a group of particles is
compressed.

For the purpose of this study a value of 13.8 cme/kg em or
2,46 1n2/1b:1n. has been used and is considered fairly representative
of the behavior of sand as well as quartz. Unfortunately, there are no
data available on sand.

4.2.5 Anelysis of A Grain Size Distribution Curve For Sand

The concepts discussed in the previous sections have been
applied to determine the energy absorbed throughthe crushing of sand
vhen subjected to large pressures. Unfortunately, there arelittle data
available in the literature which can be utilized for correlation pur-
poses and to date, the most reliable results are those shown in Fig. 4.3
vhich were taken from [h.l}]. A similar set of data is also reported
in [b4.24].

Fig. 4.3 gives the changes in the grain size distribution curves
for well-rounded 20-40 Ottawa sand when subjected to various ranges of
pressure in a condition of one dimensional compression. The results of
an analysis of thesedata are given in Table L.l and are plotted in Fig.

h. “'
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The resulte in Table 4.l were computed by the following pro-
cedure. In general, an evaluation was made only of that percent of mate-
rial which deviated from the original grain size distribution curve.

For example, at the 1000 psi range only sbout 3 percent of the material
was affected, while at 40,000 psi about 88 percent was affected. Even
in these percentages not all particles were crushed, but certain statis-
tical average dlameters were changed in this group. An investigation
was made of the distribution curve of these altered percenteges as shown
in Figs. 4.5 - 4.8 and the specific diameter was determined for this
group both before and after crushing from Eq. (4.28). From these diem-
eters a determination of the increase in surface area per volume wvas
determined from Eq. (4.29). This increase was converted to energy from
the constant 2.46 1n2/# as discussed in Section 4.2.4. These calcula-
tions yield the energy per volume of solid material considered in the
percentages altered. These values were converted back to energy per
total volume of loose material assuming the void ratio to be 0.60.

It is shown on Fig. 4.4 that after the pressure reaches some
2,000-3,000 psi, the energy absorbed due to crushing seems to be linearly
related to the pressure.

This is particularly interesting since crushing begins to have
a pronounced effect on the sand behavior at about this pressure even
though some particles begin to fail in the region of 500 to 1000 psi.
From thesemeager date it appears that the rate of change of energy to

pressure 1s constant and is approximately

L#ﬂl‘ﬁ._:o'olmz

M 4/1n° #/1n°
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Unfortunately, no other dataare available which will substantiate this
work. Likewise, the grain size distribution curves in Fig. 4.3 are Qery
likely average curves for many tests. Hence this study must be viewed
with some question and considered as indicating only a qualitative trend

until further experimental results can be obtained.

4.3 Stress-Strain Behavior of Sand After Crushing Commences

4.3.,1 Experimental Results

The statistical study carried out in Section 4.2 indicates
that in the pressure region after grain crushing begins, the energy
absorbed by sand due to crushing in linearly related to the stress. It
wvas poihted out that this energy is only that due to particle crushing
and does not include the compaction effect.

Whether these two phenomena are separable effects remains to
be determined; however, they are distinctly different energy absorbing
mechanisms. One is associated with the breakage of the molecular bonds
as smaller particles are formed from larger ones. The other effect is
the energy associated with the settlement and compaction due to a change
in the size distribution of the particles which results in an incr;ased
density.

In Section 4.2 1t was shown that the breakage of the particles
seems to follovw a random pattern. If it is assumed that the newly created
fine particles are transported to voids in the medium in & similar ran-
dom pattern, it would seem plausible that the total eﬁergy absorbed due
to crushing might also be lineerly related to the stress.

In order to investigate this hypothesis, let us study some ex-~
perimental stress-strain curves for sand in one dimensional compression.

Figure 4.9 shows a qualitative stress-strain curve for sand. If the grains
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of sand do not crush the stress-strain curve will not be concave down-
vard at B, but will continue to be concave upward. Since crushing does
occur, the curve changes in its shape. If the loading curve is trans-
lated laterally by a strain of el until it cuts the crushed stress-strain
curve at a stress 9 the area Al between the original and the translated
curve is the energy absorbed by the sand due to crushing. In the same

vay the energy absorbed due to crushing at some stress o, is the cumula-

2
tive area A, noted in Fig. 4.9,

Pigures 4.10 - 4.14k give stress-strain curves from some tests
on 20-40 Ottawa Sand carried cut by MIT [4.13] where a steel chamber was
used to restrict the lateral strains. A logarithmic plot of these same
stress-strain curves in Fig. 4.15 shows that prior to crushing, the stress
18 related to some power of the strain usually between 1.3 and 1.8 and
that & value of 1.5 is a fairly good average. The theory discussed in
Chapter 3 for a face centered array of spheres predicts this power to
be 1.5.

From Fig. 4.5 it is an easy matter to extrapolate the stress-
strain behavior wvhich would occur if crushing did not teke place. This
extrapolated non-crushing curve is then translated along the strain axis
to determine wvhere it crosses the true curve in order to “detemine the
energy absorbed due to crushing.

Figure 4.16 shows the stress-strain curve of Fig. 4.10 with the
translated curves extrapolated from the precrushing data. The energy ab-
sorbed due to crushing was then determined by planimetering the cumulative
aresa under the stress-strain curve corresponding to a particular stress.

A plot of the energy absorbed due to crushing is given in

PFig. .17 for the stress-strain curve in Fig. 4.16. The energy absorbed

v



-78-

due to crushing appears to be linearly related to the pressure for a
large range in pressures. Similar studies were made for the stress-
strain curves given as Figs. 4.10 - 4,14 and a plot of the crushing en-
ergy absorbed versus the stress is also given in Fig. 4.17. There is a
definite trend in this behavior until the stresses become quite large.
Hence it can be concluded from the meager data available that there ap-
pears to be a linear relationship between stress and the energy absorbed
due to crushing. Further study needs to be carried out on this work as
more data become available; however, these preliminary investigations
are encouraging.

4.3.2 Theoretical Stress-Strain Curve in the Crushing Region

As was discussed in the previous section, there is experimental
evidence to support the hypothesis that the energy absorbed due to crush-
ing is linearly related to the stress. Similarily, a study of the stress-
strain curves given in Pigs. 4.10 - 4.14 as well as the experimental re-
sults carried out on this study aﬁd presented in Chapter 5 indicate that
the stress prior to crushing is related to some exponent of the strain.

Figure 4.18a shows a qualitative stress-strain curve for sand
with a discontinuity at o, the crushing stress. This strees % is, of
courge, not a well-defined point for a real material; however, it can be
determined within a reasonable range. Let the stress ¢ prior to crush-

ing be expressed as

o= G(B ("’-51)
where € is the strain and @ and £ are experimental constants.
Likewise, let the stress after crushing hegins be 9, & func -
tion of the strain. Since the energy absorbed due to crushing appears

to be linearly related to the stress we have from Fig. 4.18b,




(4.32)

&l&

where E is the energy and 7 is an experimental constant. But the incre-
ment in energy dE is also the increment in area under the stress-strain
curve as show by dA on Fig. 4.18a. Also, since the sides of dA are

assumed to be a parallel

dA = ¢.de (.33)

Since from (4.32)

4oy
dT = 7 (l‘“}h)
there results from (4.33) and (4.34)
do
e
5= = g,de (4.35)
or
doy
— a 7de¢ (h‘56)
0
1
Integrating Eq. (4.36) yields the exponential result

As. = €€ (.37)
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vhere A is a constant of integration. This constant can be evaluated
from the condition that at the crushing stress °c the strain is ec.
Hence we obtain finally
_ 7(e - ¢ )
o, =0.e c (4.38)

Equation (4.38) satisfies the condition that the energy ab-
sorbed due to crushing is linearly related to the stress. The constant
7 can be obtained from curves similar to those given in Fig. 4.18.

Hence analytical expressions for a one dimensional stress-

strain curve take the following form

o= GeB prior to erushing

(4.39)
7(e - €)

c=o0e c after crushing
Equation (4.38) 4s independent of the stress-strain behavior
prior to crushing and is only contingent on the linear energy versus the
increment of stress after crushing. Hence, Eq. (4.38) mey not be lim-
ited to only one dimensional compression, but may be also applicable to
other states of stress.

4.4 Determination of the Streases at Which Grain Crushing Occurs

The aserage stress for crushing depends on many things includ-
ing the initial void ratio of the medium, the angularity of the parti-
cles, the duration of loading, and the inherent strength of the mineral
vhich composes the grains. '

For the one dimensional stress-sirain curve of a given material,

the effect of particle breakage appears to be dependent to a large extent
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on the initial void ratio of the medium. This statement 1s substantiated
in Fig. 4.19 vhere the strains of Figs. 4.10 - 4,1L have been "normalized"
using the strain at 20,000 psi as 100% strain. These data show that

there 1s a general trend for sand with the higher initial void ratios to
crush at lower levels of stress. This phenomenon is explainable because

at a high initlal void ratio there are very few contacts per unit volume,
vhich means that for a given average stress the contact stresses are
higher in a sand with a high void ratio than for a sand with a low void
ratio. Further study needs to be carried out on the determination of the
crushing stress of sand and how it is effected by particle sizes and ar-

rangements.
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(from data in {4, 13))
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(from data in (4, 13))
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(from data in (4, 13))
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CHAPTER 5

EXPERIMENTAL PROGRAM

5.1 Introduction

An experimental program for the purpose of measuring the pro-
perties of real soils in one dimensional compression has been an integral
part of the overall efforts of this research study. The experimental re-
sults from these tests serve several purposes:

1. The basic phenomena observed in the tests can be compared
with the conclusiong drawn from theoretical analyses of idealized models
which are assumed to represent soil.

2. The energy absorbing capacity of soils may be measured by
means of cyclic loading.

3. The various energy absorbing mechanisms may be observed
for a given s0il at different pressure levels in order to determine the
stress ranges vhere each mechanism predominates.

k., The stress-strain curves obtained may be used to study one
dimensional wave propagation through the particular soil media tested.

5. The lateral stress °H vhich results under conditions of
zero lateral strain can be measured with the =xperimental apparatus.

6. The effect of lateral strain on the principal stress ratio
can be measured by allowing a given strain in the horizontal direction
and observing the change in °H/°V’ vhere oy is the vertical stress.

7. An effective Poisson's ratio for soil in one dimensional

compression can be evaluated from the experimental data on an/av by the

relationship

-7 (5.1)

aj a
<
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A device wvas designed and built to investigate the one dimen-
sional behavior of sand in the high pressure regions. The apparatus
can meagsure the lateral stress under conditions of zero lateral strain,
and provides one of the best means yet developed for attaining the
condition of "zero" lateral strain. Previous investigators have gener-
ally assumed that the effects of small lateral strains are negligible,
particularly when the sample is enclosed in steel rings. Research by
Speer [5.1], vhich was recently pointed out by two of the authors [5.2],
shows that lateral motion significantly affects the ratio of °H/°V’
The results of Speers's research is presented in graphical form in Fig.
5.1 and shows that a lateral displacement of 4 x 10'6 inches will cause
a 10% reduction in the value of aﬂ/av. Since Speer's work was with a
sand sample 7 5/8 inches in diameter, the above diameter change corre-
sponds to a unit strain of approximetely .5 x lO-6 in./in. It is doubt-
ful to the writers that Speer really achieved an accuracy of + 1 x 10-6
in./in. since small temperature fluctuations wouid cause minor veria-
tions of at least that magnitude in the strain gage readings. However,
his work does in general point out that the ratio of °H/°V is very sensi-
tive to lateral movements. This phenomena had already been observed by
Terzaghi es early as 1934 in connection vith his "Large Retaining Wall
Tests" at MIT [5.3]. Terzaghi concluded that an outward movement of the
wall of .0007 h in the case of a well compacted dense sand was enough

to fully mobilize the shear strength or, in other words, reduce the

l-sin®
1+s8in®°

approximately to a lateral strain of about 12 x 10

This outward movement corresponds
4

ratio of oﬂ/av = KB to Kh =
in./in, Thus for
a truly one dimensional test, whereby one also wishes to measure the

magnitude of the lateral stresses which are concomitant with the vertical
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load, 1t is extremely important to closely control the lateral displace-
ments. In fact, preliminary calculations revealed that an extremely
thick walled cylinder subjected to an internal pressure of 7,500 psi
(vhich is an approximation to the lateral soil pressure due to a ver-
tical load of 15,000 psi) would experience a radial strain of 3.25 x
10'“ in./in. if the specimen were 7 inches in diameter and the contain-
ing cylinder was assumed to have an infinite external radius. This
strain 1s of the same order of magnitude as the tolerable strains listed
by Speer and Terzaghi. Thus, in order to study one dimensional com-
pression, a new experimental apparatus had to be designed which would
restrict the lateral deformations. The apparatus developed on this

program 1s discussed in the folloving sectionms.

5.2 Experimental Apparatus

5.2.1 Description of the Apparatus

An experimental apparatus was designed to determine the stress-
strain relations for soll under one dimensional compression and to mea-
sure the lateral stress necessary to completely restrain the sample. This
apparatus shown schematically in Fig. 5.2 consists essentially of a thin
steel ring wvhich contains a soil sampie. The ring is surrounded by an
annular space filled with o0il which communicates freely with hydraulic
Jacks. The flexible ring and o1l space are enclosed in a thick hollow
cylinder bolted to the baseplate in order to withstand the high fluid
pressures.

The principle upon which the device is based is relatively
simple. As the vertical load is applied by the testing head there are
lateral pressures built up in the sand which tend to increase the diame-

ter of the thin steel ring. Any slight increase in diameter of the ring
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is immediately indicated by the strain gages mounted on the flexible
ring as shown in Figs. 5.2 and 5.3. In order to keep the lateral
strains zero, the oil pressure is modified with changes in the verti-
cal load in such a manner that the strain indicator remains balanced
at all times during the test. When the strain indicator remains bal-
anced there are no lateral strains and the oil pressure is equal to
the lateral soll pressure acting against the side of the containgr.

The apparatus consists of the following four basic elements:

(1) A thin steel ring monitored with strain gages (Fig. 5.3a).

(2) A vaseplate (Part B, Fig. 5.2).

(3) A thick walled cylinder (Part A, Fig. 5.2).

{4) A testing head.

The testing head and the thin steel ring contain the essential
sensing devices for making the desired measurements and are discussed in
the following sections.

5.2.2 Fabrication and Calibration of the Strain Gages on the Steel

Ring
Four Budd Metalfilm Strain Gages (Type C6-1161) were mounted
at the mid-height of the steel ring at 90° intervals and connected in
" series as shown in Fig. 5.3. In this arrangement, the strains sensed
by the four different gages are averaged since the changé in resistance
balanced by the indicator is the sum of the changes in all four gages.
The gages are "foil" gages with a gage length of one inch and
a grid width of 0.09 inches. Gages of this proportion were chosen in
order to have gages relatively insensitive to axial strains in the ring
arising from friction between the soil and ring, but at the same time
very sensitive %0 circumferential strains which accompany a diameter

change. These gages worked very well vhen the axis of the one inch gage
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length was aligned perpendicular to the axis of the ring. These gages
wvere also very convenient because they are extremely thin and flat, mak-
ing them rather insensitive to the all around pressure of the oil in
vhich they are submerged during test conditions. Nevertheless, the
effect of the high oil pressure on the gages could not be assumed to
be negligible. The gages had to be callbrated for these effects.

The apparatus 1s assembled for calibration as shown in Fig.
5.4. The significant feature of this assembly is that the lower "O"
ring between the bottom of the steel ring and the baseplate has been
removed so that the o1l in the annular space can communicate freely
with the oil inside of the sample chamber. A steel plug one inch thick
is also inserted into the sample chamber to confine the o0il and a test-
ing head is lowered flush with the top of the plug to supply a reaction
of sufficient magnitude to keep the plug in place during calibration.

The gages were calibrated by increasing the 0il pressure in
increments up to 2,500 psi. Since the "O" ring at the bottom of the
steel ring was omitted, the oil pressure in the annular space was equsal
to the pressure in the sample chamber, thus giving zero net pressure
differential across the ring and no circumferential stresses or strains.
Hence any change in gage reading is due to the effects of the all around
0il pressure on the gages. This calibration procedure was conducted
geveral times and the calibration curve obtained is shown in Fig. 5.5.

-4

The curve vas reproducible vithin + 4 x 10 in./in. end the pressure

effect amounts to 7 x 10-6 in./1in. per 500 psi of oil pressure. Compen-
sation for these pressure effects was made vhen the tests were conducted
on sands.

After the calibration of the inner diaphragm was completed,

the device vas modified for testing by disassembling the apparatus and
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and inserting the "O" ring between the bottom of the steel ring and the
baseplate to prevent leakage of oil irom the annular space into the sam-
ple chamber, The device was then reassembled as shown in Fig. 5.2 for
testing.

5.2.3 Description of the Testing Head

The load was applied to the soil sample by means of a heavy,
internslly stiffened piston, mounted in a 120,000 1b. Baldwin hydraulic
testing machine (Fig. 5.3b). The testing head is 6.800 inches in diame-
ter and 8.125 inches high. The device consists of two rigid steel plates
which are welded on two concentric steel cylinders as shown in Fig. 5.6.
This figure also shows the manner in which a dynamometer is incorporated
into the device to measure the pressure over the center square inch of
the loaded area. This feature enables one to check the load on the cen-
ter square inch against the average load over the entire area, The pis-~
ton and the dynamometer were designed with approximately the same rela-
tive stiffness in order to maintain a uniform deflection of the specimen
across the face of the loading device as the -sample is compressed.

The vertical displacement of the sand during compression was
measured by two Ames Diels mounted at 180° to each other on the loading
piston as shown in Fig. 5.7. The dials measure the relative displace-
ment between the moving piston and the thick walled cylinder designated
as Part A in Fig. 5.2. This measwured relative displacement is actually
the sum of the vertical displacement of the s80il plus the strain in the
testing head from the surface of loading to the point where the dials
are connected. The strains in the head were so small compared to the
strains in the s0il that they were neglected and the measurement was

taken to represent the vertical displacement of the soil sample. The




-109-

dials are accurate to 1/10,000 of an inch and have a 1" travel. When
the two dials read differently, the average reading of the two dials
was taken as the vertical displacement of the soil.

5.2.4 Proportions cf Test Specimen

The proportions of the test specimen, 7 inches in diameter by
2 inches high, were selected to minimize the effects of friction between
the sand and the steel ring. The theoretical basis for the above state-
ment is presented in the following analysis from [5.5].

Let us consider a confining ring of radius R and height H as
shown in Fig. 5.8. At any arbitrary depth z below the surface loaded
by the force P, the vertical force supported by the soil is designated
as Qz. The force Qz may be expressed in terms of the shearing stress
rz and the applied load P as:

z

Q=P -f 2Rt dz (5.2)
[}

The shearing stress is also related to QZ by

Q,
L . (5.3)

vhere A is the area of the sample, Ko is the ratio of the horizontal to
vertical stress and f is the coefficient of friction between the soil
and the ring.

Substituting Eq. (5.3) into Eq. (5.2) yields

k4

qz.p-f 2:R¥-Ko-fdz (5.4)
o}
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Differentiating both sides of Eq. (5.4) and rearranging results in

dQ, -2%RK f
-af= — dz (5.5)

@ 1

Integrating the above equation between the appropriate llmitg we obtain:

D Q. Dr-oxRK £z ~OxRK_£H
T e RS
P )

Rearranging Eq. (5.6) we obtain:

-2IRK°fH -2K6fH
A R
Q = Pe = Pe (5.7)

-2K fH
Equation (5.7) implies that if e-__%__ approaches 1, then Qg = P, and
the frictional effects become negligible. This relationship shows that
the R/K ratio should be as large &s possible to reduce the effect of
friction. In fact, increasing the R/H ratio by a factor of 2 has the
same effect as reducing the coefficient of friction by 50%. The pre-
sent dismeter to height ratio of 3.5 used in this test is considered
sufficiently large to minimize the frictional effects, but on future
tests 1t would be desirable to vary the height of the sample in order
to investigate the effect of this ratio. A practical limit is reached,
however, in reducing the height of the sample since the height of the
sample influence: the accuracy of the vertical strain measurement. If
the sample becomes too thin, the increments in the displacements can
become too small for the Ames dials to sense, especially in the higher
pressure regions vhere the constrained modulus of sand approaches 300,000

psi.
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5.3 Description of Tests

%.3.1 General

A series of one dimensional compression tests with lateral
earth pressure measurement was conducted on a dry sand. The sand wés
a vell rounded, coarse, uniform, silica sand from Le Suer, Minnesota.
The sand is very similar to standard Ottawa sand in all respects except
that only the sizes between the No. 10 and No. 20 sieves are present
in this material. Relative density tests on this material showed that
the voild ratios for the loosest and densest states are €nax = 675

and e = ,455, respectively. The loosest state was obtained by pour-

min
ing the sand in a container of known volume through & glass funnel to
prevent the sand from falling. The densest state was obtained by put-
ting the sand in the same container in 1/2" layers and tapping the
sides with a mallet until it appeared as if the surface was no longer
settling.

The initial void ratio, the strain rate and the pressure ranges
of cyclic loading were varied in this series of tests. The variation
of these parameters made possible a study of the following effects:
(1) The influence of relative density on K.

(2) The influence of strain rate on K.

(3) The relationship between the overconsolidation ratio and

(4) The effect of initial void ratio on the stress-strain curve.
(5) The effect of initial void ratio on energy dissipation.

(6) The effect of strain rate on the stress-strain curve.

(7) The effect of pressure level on energy dissipation due to

cyclice loading.
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5.3.2 Preparation of Test Specimens

When preparing the test specimens it is extremely important
to be able to reproduce the same initial void ratio for all specimens,
since the relative density significantly affects the stress deformation
properties of sand. Each sample of sand used in the tests consisted of
2,000 grams of oven-dry material; thus the volume of the sand solids

was constant for each test. Since the void ratio e is by definition

\/
v

V"' )
8
8oil solids, it may also be written

vhere Vv 18 the volume of the voids and Vs is the volume of the

V-v
8

Vs

volume of the sample. Since Vs was constant for all the tests, the

wvhere V represents the total

void ratio was determined by controlling the total volume, V. The sam-
ple was cylindrically shaped so this was easily accomplished by control-
ling the height of the sample.

Each test specimen vas prepared by placing 2,000 grams of
oven-dry sand into the sample chamber and inserting a metal plug into
the chamber above the sand. This steel plug fits into the chamber as
shown in Fig. 5.4. A vibretor was then set on the metal plug and the
sand was vibrated until the plug settled down to a predetermined mark
fixing the height of the sample. This method of sample preparation has
proved to be rather simple and convenient and the test results thus far
indicate that very good reproducibility has been achieved by the employ-
ment of this technique.

5.4, Test Results

S.4.1 Axial Stress-Strain Relationships

The axial stress-strain curves for each of the eleven tests
are shown in Figs. 5.9 through 5.19. The curves shov the entire history
of loading and unloading for all tests including those tests vhere the

samples were subjected to several cycles of load.
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The stress-strain curves in general for all the tests are non-
lipear curves vhich are concave upward on both the loading and unloading
portions. The non-linearity of the curves demonstrates the well known
fact that the stiffness of a given sand is highly dependent upon stress
level. This stiffness in the case of one dimensional compression is usu-
ally designated as the "Constrained Modulus." The variation of the con-
strained tangent modulus with the verticsl stress for the initial loading
in tests 3, 4, 9, and 13 are shown in Figs. 5.20 and 5.21, These curves
also show the effect of relative density on the constrained modulus.
Specimens 3 and 4 had an initial void ratio of 0.62 and hed a constrained
modulus of 200,000 psi at a stress of 2,500 psi; whereas specimens 9 and
13 had an initial void ratio of 0.54 and a constrained modulus of 280,000
at 2,500 psi vertical stress. Figure 5.22 shows the variation of con-
strained tangent modulus with the vertical stress for initial loading on
all tests vith an initial void ratio of 0.5k.

The stress-strain curves for tests 3 and 4 are interesting S?-
cause in a stress range of 2,600 - 3,000 psi the initial loading curves
show a tendency for the curve to be concave downward. Crushing of the
grains could be heard at this stress level and it is possible that crush-
ing and rearrangement were responsible for this apparent decrease in rig-
idity. This tendency toward a decreasing modulus in the 2,800 psi range
was not observed in the other tests even though the crushing could be
heard, and crushed angular particles were observed after testing. The
primary reason that tests 3 and 4 manifested the above phenomenen is be-
cause the sample for these tests had an initial void ratio of 0.62; whereas
all the other specimens had an initial void ratio of 0.54. The sand with

the higher void ratio is free to rearrange as a small amount of crushing
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occurs, eand the strains from this rearrangement are reflected in a decreas-
ing modulus as in tests 3 and 4. The sands with a lower void ratio, how-
ever, are not free to rearrange to a great degree when crushing initiates
and thus no significant strains due to rearrangement occur. Even the
denser sands will show a decreasing modulus at some stage due to crushing,
but in general, one would expect crushing to occur at a higher average
stress level in & dense sand than in a loose sand. A dense sand has more
contact points per unit volume than a loose sand and thus for the same
average applied stress, the loose sand has higher grain to grain contact
stresses than the dense sand. Therefore, the loose sand begins crushing
at a lower stress than the dense sand. The phenomena discussed above is
1llustrated very well in Fig. 4.19 of this report.

The loading and subsequent unloading of the sample showed that
on the average about 75h of the axial strain was recoverable. This strain
wes probably the result of elastic deformations at the points of contact.
The non-recoverable portion of the strains most definitely was due to ir-
reversible rearrangement of grains. The significant portion of the re-
arrangement, however, takes place on the first cycle of loading since sub-
sequent cycles are nearly reproducible and show only a slight tendency to
rearrange further. These phenomena are illustrated fairly well by test 8.

The stress-strain data from the tests are presented on graphs of
loglo stress versus loglo strain in Figs. 5.2% through 5.33. The stress-
strain date plot is a straight line on these graphs which means that the

axial stress may be expressed in terms of the axial strain by

€. = Ko ° (5.8)
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The above expression may elso be written as:

log), €, = 1og, (K + n log 0, (5.9)

Thus from Eq. (5.9) it is apparent that the parameter n is the recipro-
cal of the slope as measured from the graphs shown and K is the value of
the strain at which the straight line intersects the log10 strain axis.
The values of n range from 0.38 to 0.53 for these tests as compared to the
value of 2/3 which was predicted for n from the theoretical analysis pre-
sented in Chapter 3. The results do show, however, that an exponential
relatiénship does occur as predicted by theory, but the value of n from
tests seems to be consistently less than 2/3.

The theory from Chapter 3 also predicted a relationship between

the constrained tangent modulus, Mc, and the vertical stress, 9,,7 88

-

do 1/3 '
M =—2%2-¢, 0o (5.10)

vhere C1 is a constant., Figure 5.34 shows the variation of log Mc and
log 9, for all tests on samples with an initial void ratio of 0.54.
Since the relationship is a straight line the actual relationship be-

tween the constrained tangent modulus and the vertical stress is
M = Co - (5.11)

vhere k is the slope of the line. The value of k for this set of experi-
ments is 1/2 whereas the theory from Chapter > predicted that k should be
1/3.

The small number of tests conducted thus far are not sufficient

to make any definite conclusions about the effect of strain rate on the

e o
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stress-strain curves; however, there appears to be a definite trend even
though the range of strain rate has been relatively small. The constrain-
ed moduli, in the 2,500 - 3,000 psi vertical stress range, for samples
with an initial void ratio of 0.54 were compared for loading rates vary-

ing from 0.005 to 0.040 in./min. The results are shown below.

Testing Rate Constrained Modulus
in./min, psi
0.005 262,500
0.010 262,500
0.020 269,600
0.040 270,300
Note: Controlled stress test, i.e. test #10 245,000

The constrained modulus appears to }ncreas; slightly with in-
creasing strain rate, but in the range of strailn rates considered, this
effect iz not of great importance. In fact, a slight change in initial
void ratio is much more effective in changing the constrained modulus
than the strain rate.

5.4.2 The Coefficient of Earth Pressure at Rest

The results of the lateral earth pressure measurements for the
initial loading of each specimen are shown in Figs. 5.35 through 5.45.
The latersl pressure is plotted as ordinate and the vertical stress as
abscissa. The experimental data plot in a straight line for all curves
and KB, the coefficient of earth pressure at rest, is numerically equal
to the slope of the stralght line.

The influence of relative density on Kb‘can be seen by compar-
ing Ko for the samples having an initial void ratio of 0.62 with the

sample having an initial void ratio of 0.54, The samples with the high
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void ratio had measured values of Ko ranging from 0,390 to 0.415; whereas
the denser samples tested at the same rate of loading as the above samples
had KB values from 0.340 to 0.360. Thus K eppears to decrease as the
relative density of the sand increases. This variation was expected since
it 1s well known that the angle of internal friction increases as the
relative density increases. Other investigators such as Jaky [5.4] have
shown that the value of Kb decreases as the angle of intermal friction
increases for a soil with an over-consolidation ratio of 1.

The value of Kb for a soil of constant initial void ratio also
varies slightly with strain rate. The general trend of the date showvs
that Ko decreases with increasing strain rate. Tests on the dense sand
(e = 0,54) showed that K, varied from 0.375 for a consolidation type
test as in test 10 to as low as 0.330 for the fastest loading rate of
0.004 in./min. The values of K, for the intermediste loading rates of
0.01 and 0.02 1n./m1n. were 0,350 and 0,335, respectively,

Thus far, the discussion of the coefficient of latersl earth
pressure at rest hes been restricted to that portion of the stress-strain

curve vhere the ratio of the maximum previous stress to the existing stress

Max. previous stress
Present stress

OCR = 1). In this region the coefficient of earth pressure at rest is a

on the sand is wnity (4.e., = Overconsolidation ratio =
constant, as predicted by the theory of Chapter 3, but if the specimen is
unloaded from some maximum pressure, then the OCR becomes greater than 1
and the value of Kb does not remain constant as unloading progresses. The
variation of Ko with OCR is illustrated in Fig. 5.46 for tests 3 and k4.

This graph clearly shows that KB increases with increasing OCR., The maxi-
mum value of Kb measured during unloading was 2.0 and it appeared to be

still increasing. If measurements could be more accurately obtained in
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the final stages of unloading where the pressures are very low, it would
probably be found that the values of Kb would ultimately approach the
coefficient of passive earth pressure,

Figures 5.47 and 5..48 show the variation of lateral earth pres-
sure with vertical stress for 1 1/2 cycles of loading in tests 12 and 13.
These curves show that with cyclic loading the coefficient of lateral
earth pressure can gradually be bullt up with each cycle of load. Ob-
serve the data for test 13 for example at points a and b, The value of+:
Ko at a is higher than at b even though the overconsolidation ratio is
the same at these two points. Thus, the value of Ko for a given sand 1is
not only a function of stress history as expressed by the OCR, but it
also depends on the number of preceding cycles. Further tests are ex-
pected to indicate how much Kb can be increased at a given OCR by cyclic
loading.

5.4,3 Energy Absorption

The energy absorption characteristic of the dry sand were in-
vestigated by means of cyclic loading. In general the first cycle was
conducted by loading to a maximum pressure of 3,290 psi and unloading
to zero. The deformations in the first cycle were only about 75% re-
coverable due to the fact that rearrangement of the grains caueed ir-
recoverable strains. The sample was then loaded to some lower stress
level, usually 1,100 psi, and then unloaded. It was found generally that
the second cycle deformations were almost 100% recoverable, but energy
wvas still being lost because the loading and unloading pathé wvere differ-
ent, If the second cycle was followed by a third cycle identical to the
second (such as in test 3, 5, 6, 7, end 8), it was found that the third

cycle traversed essentially the same loop with very little irrecoverable
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strain but that a significant amount of energy was still being dissipated
due to the difference between the loading and unloading paths. In fact,
these loops were g0 nearly identical that for tests 3, 5 and 7 the sec-
ond and third cycles treversed exactly the same path and thg small loop
showvn on the stress-strain curves for these tests actually represents
both the second and third cycles.

The energy lost in hysteresis loops for various tests was
evaluated by computing the area enclosed in the loops traversed in the
second and third cycles of loading. It was found convenient to express
the energy lost as a percentage of the energy input. The results of
these measurements are shown in Table 5.1. In general it was found that
the ratio of energy lost to energy input is practically a constant re-
gardless of the magnitude of vertical stress, and varies between the nar-
rov limits of 0.275 to 0.334. For samples which had the same history
of loading, it wves found that the samples with the higher initial void
ratios alvays lost more energy than those with the lower initial void
ratio.

The fact that the energy lost/ energy input ratio has been ob-
served to be fairly constant regardless of the range of stress is signi-
ficant, but this relationship is restricted to the maximum value of ver-
tical stress employed in these tests. At higher stress levels crushing
may be a major factor and thus other mechanisms of energy dissipation
enter into the picture. Further tesis into the higher pressure regions
will enable a better determination of the range of pressures for vhich
this energy ratio is applicable.

The theory of Chapter 3 predicted that the ratio of energy ab-

sorbed to input energy for a hysteresis loop from a stress of zero to any
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stresg below the crushing stress should be a constant related to the co-
efficient of friction between grains. Thus the actual measurements are

in agreement with theory because this ratio was observed to be practically
a constant. The laboratory measurements, however, provide another check

on the theory which is quite interesting. The theory predicted that

1-f
k, = 2 (33 (5.12)
and
FaN O} 2t
EI., = (5.13)

Since KB and %ﬁ have both been measured in the leboratory tests,
1

the coefficient of friction or more appropriately, the pseudo coefficient
of friction can be evalusted by two independent calculations for each test.
If the theory is reasonably appropriate the two values of f should be in
good agreement for each test. These calculations were made for each test
and are presented in Table 5.2, Tests 3 and 4do not show good agreement
for the two calculated values of the coefficient of friction. Tests 5, 6,
7, 8, 9, 11, 12, and 13, however, show & very good correlation between the
two independently calculéted values of the coefficient of friction. The
latter group of tests had an initial void ratio of 0.54 as compared to 0.62
for tests 3 and 4. Since the theory of Chapter 3 assumes a grenular medium
in a dense state, it is not surprising that the tests on sand in the denser
state should give better correlation with the theory'than tests as higher

initial void ratios which allows more rearrangement of the grains.
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Test No.
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ENERGY LOSSES FOR REPEATED LOADINGS

Loop Range
—psL
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1100
1100
1100
1100
1100
5290
1100
2195
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TABLE 5.1

Mean Stress
psi

1647
548
1099

Energy Lost
—

33,4
33.1
32.8
30.2
27.9
27.5
27.8
28.7
28.6



Test

=

O & 3 O\

10
11
12
15

.62
.62

.5k
.5k
.54
.Sk
.Sk
.Sk
.5k
.5k
.5k
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TAELE 5.2

CORRELATION OF £, K_, AND AE/El

1-2K
£ = —2
2K + 1
[¢]

.12
.09

.18
.16
.20
.20
.19
(No Hysteresis loop on this test)
.18
.18
.18

LE
1/2 E,

(1 - 1/e %f)

.20
.20

.20
.18
.16
.16

.17

<17
.1k
.15



Pressure Ratio, K
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f = Coefficient Of Friction, Between Soil And Ring

Fig. 5.8 SCHEMATIC DIAGRAM ILLUSTRATING THE EFFECT OF
SIDE FRICTION IN ONE DIMENSIONAL COMPRESSION
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Vertical Stress, oy, PSi.
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Vertical Stress, o, psi.
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Fig. 5.23 LOGARITHMIC PLOT OF STRESS STRAIN CURVE FOR
MINNESOTA SAND IN ONE DIMENSIONAL COMPRESSION
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Vertical Stress, o, psi

-149-

15,000

8000

6000

4000

800

200

'R

0.002 0.004 0006 0008 O.O1 0.02
Vertical Strain, G in./Zin.

Fig, 5.26 LOGARITHMIC PLOT OF STRESS STRAIN CURVE FOR
MINNESOTA SAND IN ONE DIMENSIONAL COMPRESSION

0.04



Vertical Stress, Ty pSi.
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APPENDIX A
APPLICATION OF THE HERTZ THEORY TO
THE BEHAVIOR OF A GRANULAR MEDIUM
A question of paramount importance arises in the development of a .
theory of granular media based on the Hertz theory [A.1]. It must first be
concluded that the Hertz theory is valid in the pressure regions of interest
before the theory has any usefullness., In view of this it may be worthwhile
to review the development of the Hertz theory here for the convenience of the
reader and note simultaneously the fundamental assumptions as they arise.
The derivation given in the following is a summary of the presentation
given by Timoshenko and Goodier [A.e] , and the assumptions are discussed by
the writers in relation to applying the results to a granular mediua composed
of well rounded quartz send,
let us first look at the pressure between two spherical bodies held
in contact by a normal force. In the solution of this problem it is assumed that
at the point of contact these bodies have spherical surfaces with the radii Rl
and R, (Fig. A.1). 1If there is no pressure between the bodies we have contact
at one point O. The normal distances from the tangent plane at O to points !
such as M and N, on a8 meridian section of the spheres at a very saall distance

r from the axis z, and z,, can be approximated in the folloving msnner (rig. A.2):

z=utan B/2 ~1/2 u tan B
z=1/2u. u/R-ua/2R (A.1)
2

z-ra/anmrer - ut

Thue in (Fig. A.l)
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2 r2

o =By - (a.2)

The distance between points M and N is

r2(R1+R )
zl+12-—281—32—3- (A.3)

In the particular case of contact between two spheres of equal radius,
R, we have:
2

3+, raagn = r2/R (A.4)

I? the bodies are pressed together along the normal at O by a force
P, there vill be a local deformation near the point of contact producing contact
over a saall surface vith a circular boundary, called the surface of contact.

Assuming that the radii of curvature Rl and R2 are very large in comperison with

the radius of the boundary of the surface of contact,we can apply, in discussing

local deformation, the results obtained for & point loed on a semi-infinite

boundary. let v denote the displacement due to the local deformation in the

direction z, of & point such as M on the surface of the lower ball (Fig. A.l),

and v, denote the same displacement in the direction for a point such as N

3

2
of the upper ball, If it is assumed that the tangent plane at O remains immovable
during loeal compression, then, due to this compression, any two points of the

bodies on the axes z, and z, at largs distances* from O will approach each other

"#Such distances that deformations due to the compression at these points can
be neglected.

e
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by & certain amount @, and the distance between two points such as M and N
will diminish by o - (vl + v2). If the two spheres are of equal radius,

the distance between such points as M and N vill diminish by a - ov, If
finally, due to local compression, the points M and N come inside the surface

of contact, we have

2
a.(v1+v2)'zl+22'r i;llR;RZ) ~(A.5)
If the aipﬁeres have a radius R = R1 - R2 then we have
a - ov = 2z = ro/R
Thus
vs= g‘.a‘_r’:ﬁ (A.6)

at any point r on the surface of contact.

let us nov consider local deformations. From the condition of symmetry
it can be concluded that the intensity of pressure q between the bodies in contact
and the correspouding deformation are symmetrical with respect to the center O
of the surface of contact. Taking PFig. A.% to represent the surface of coantact,
and M as a point on the surface of contact of the lower ball, the displacement
of this point may dbe found in the following manner, For a point load on the surface
of an infinite medium such as shown in PFig. A.3 , the vertical deflection at a

distance r from the load P is given as

Ve P‘l - v2!

TEr (A.7)

vhere E is Young's modulus and V is Foisson's ratio for the medium.
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Now let us coneider Fig., A.4 vhere we have a distributed load q
over the circular area of radius a. We are concerned with the displacement
of point M in relation to the distributed load q. Thus the vertical deflection

v at any point M within the loaded boundary 1is

2 -
1l -V qde
v S ﬂ (A.8)

vhere

da=ds . A¥ . 8 (a.9)

2
ve ‘I'Tvlﬂqdvds , (A.10)

Hence if two spherical balls of equal radii R are pressed together,

at some point r the local displacement v becomes

2
ow=a-1/Ra= gi%uﬂqdvds (A.11)

The distribution of q must therefore be such that Eq. (A.11) is satisfied. It
will nov be showvn that this requirement is satisfied by using a pressure distri-
bution of q over the contact surface represented by the ordinates of a hemisphere
of radius a constructed on the surface of contact.

Ir 9, is the pressure at the center O of the surface of contact, then

® K

(A.12)

vhere k is a constant factor indicating the scale of our representation of the
pressure distribution. Along & chord mn the pressure q varies, as indicated

in Fig. A.L by the dotted semicircle,
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Performing the integration along the chord we find

fqu . 33 A (A.13)

vhere A is the area of the semicircle indicated by the dotted line and is equal

to

AeZ(e? - 1 a1ndy) (A.14)

Substituting Bq. (A.14) into Eq. (A.11) we find

oveQ -§2- -(l—iv—azj;"?%(aa -2 siny) ay
or |

a- ;3 - ;9- Q;—'a)-\/:(.z - r2 sin®y) av (A.15)
Integrating Eq. (A.15) yields |

a-;—e---:—q 1;‘"2 Z (2a® - £?) (A.26)

This equation will be satisfied for any value of r, and henc: ti.e assumed pres-
sure distribution is the correct one if the followving relatisnz exist for the
displacement @ and the radius a of the surface of contact beiveen two equal radii
spheres: '

2
QR (1 -V) qer(1-v) o
o= 2 . (A.17)

(1 - V) m(1-v) .
as= b —5 - ) W ’ ) (A.18)

vhere b is the shear modulus of the spheres.
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If the volume of the pressure diagram between two spheres is de-

fined as the normal force N between the spheres, then

2 247
l = Py . 3 "
from vhich we obtain
-2 X
B"2.2 (A.19)

Combining Bq. (A.19) with Eq. (A.17) and (A.18) yields

R ) (A.20)
2 - %mi—'ﬁ (A.21)

The radius of contact a may be eliminated from Eq. (A.20) and (A.21)
to give

as=2 [ﬂ-l——'vvg!} -1/3 (A.22)

8uR

Bquation (A.22) shows that the relative approach of the center of two
spheres is a function of the two thirds power of the contact force.
The normal complience C is

-1/3
aa b 2‘1-'!! l -v
C-ﬁug[ 2} >

8uR 8MR .

vhich may be simplified to

l] =9
™ (A.23)
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where a 1« given by

- %%——m} v (a.24)
L

There are two key assumptions in the Hertz theory which should be
discussed to Justify its use in a theory of granular medias.

The first of these 1s that described by Eqs. (A.l) vhere it was
assumed that the deviation from a tangent plane is quadratic, i.e,

2

2R | (A.25)

2 =

The exact expression for this is

Zg%ﬂ- 1%2_
2R
or
1‘2 Lz 1,242 1 ,2y3
2‘2—3{1+§§+g(§)+5(§)+....J (A.26)

Hence if % is small with respect to 1, the assumption that the higher order
terms can be neglected is guite in order.

The second assumption is of a lover order than the first and re-
juires that the radius of contact be small compared to the sphere radius R.
This assumption is associated with the use of the expression for the deflection
resulting from a point load on an infinite medium, i.e. Equation (A.7). Essentially
vhat is being assumed is that the curvature of the spheres beyond the contact
area does not affect the stress distributions and deflections at the contacts.
Schematically this assumption implies that the surfaces in contact are two
infinite media with small bumps in them rather than two sphere (Fig. A.5). Clearly

if the radius of contact is small, the curvature has little effect on the behavior.
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This is particularly true vhen the tw contact surfaces are spherical and the
stresses avay from the contact area damp out very fast. The two problems
{llustrated by (Fig. A.5) could conceivably be solved and a quantitative
comparison be made; however, the effort would be a major one and the value to
the study at hand is questionable as is seen in the following discussion.

The problem of concern has to do with the use of the Hertz theory
to describe the behavior of a granular medium, namely sand, subjected to an
average applied stress, L over the surface. ‘herefore, it is of interest
to determine vhat limits are to be placed on this stresa due to other reasons
such as crushing. In fact it is known that crushing begins in sand compressed
one dimensionally at average stresses on the order of 1000 psi. By the time
the stress reaches 5,000 psi the crushing effect is a major part of the deformation

behavior.

In Section 3.1.1 it wvas determined that the normal contact force

lp ves related to the radius of contact by Eq. (3.1)

1
il

The normal force, N, was related to the applied force, Ez’ by

Eq. (3.48a)
Ny (1+1) = “[% B, (a.28)

TFurthermore it was shown
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that the average stress 9, is related to F; by

P,
R

g =
2z

5 (A.29)

ool

Equations (A.27), (A.28) and (A.29) may be combined to give

1/3 o
@ .- el 2 (A.30)

The relationship between a/R and the stress is independent of R.
Representative values of f, v and 4 for quartz which are appli-

cable to sand are

£ = 0.15
v = 0.20
B =6x lO6 psi

Using these values and Eq. (A.30) we obtain the following re-

lations between a/R and 0,

(8)3 - 0.369 2 (a.31)
R ° M *
L
R cz
pel
0.031 500
0.039 1,000
0.057 3,000
0.085 10,000
0.10 16,300

Thus we can see that for the stresses of interest (prior to
crushing) vhere the theory is to be applied, the radius of contact com-
pared to the radius of the sphere will be much less than 0,10. Not

only 1is this fairly small but it should be remembered that there are
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other assumptions involved in the application of this theory to sand
vhich mey be far worse. In fact, the assumption that sand particles,
even uniformly smooth ones, are spheres is perheps more questionsable
than this one. Microscopic photographs of sand particles show many
types of asperities which naturally cannot be easily considered in this
theory. If the effort warrants it, it may be possible in the future to
extend the theory to include roughness effects by using the recent work
of Goodman [A.3]. Such an extension 1s not warranted at the present in
view of the nonuniformity of sand.

Another effect ignored is that of the tangential forces at the
contacts on the geometry Jjust outside the contact area. With large con-
tact forces there may exist little outward bumps outside the contact sur-
faces vhich would have some effect on sliding.

From the above-mentioned, it can be concluded that within the
confines of the expected use of this theory, the assumption that the
Hertz theory is applicable to the behavior of granular materials is cer-

tainly warranted.
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Fig. A.1 TWO UNSTRESSED SI’HERES IN CONTACT

Fig. A.2 SEGMENT OF A SPHERE WITH A TANGENT AT 0

e

IS TS

Fig. A.3 POINT LOAD ON AN INFINITE SURFACE
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Pressure Variation Of
g Along mn.

Fig. A.4 PLANVIEW OF THE CONTACT SURFACE OF
TWO SPERES IN HERTZ CONTACT

\ \//
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Fig. A.5 CORRELATION BETWEEN SPHERES AND INFINITE
SURFACES INHERTZ CONTACT
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APPENDIX B

NUMERICAL SOLUTION TO THE EQUATIONS GOVERNING
THE BEHAVIOR OF A GRANULAR MEDIUM HAVING
RESTRICTED LATERAL STRAINS
The general equations governing the behavior of a face centered
array of spheres subjected to a vertical force Pz and symmetrical lsteral
forces PH have been developed in Section 3.1.1. The resulting equations
including the lateral strain condition were given previously as Eqs. (3.37)

and take the following form:

NP

aN, + aT, =5 ap,
NP

aN, + QN - dT, -~ 4Py = 0
o s (B.1)
1 dN, - dN_ + °2 aT -0
C— 1 2 C_ 2
2 2

2R
Ny "c dey

Here the N's and T2 are the normal and tangential contact forces

and the C's and 82 are the corresponding compliances. ({Figs. B.l and B.2).

The radii of the spheres is R and the lateral strain is € Let us intro-

g
duce the dimensionless variables

N N T
= 23) 2, (), 3Q) 2
%, R%, ﬂ%

R

(B.2)
L3aw) B 3ae) B
g R, 2 R

vhere 4 and v are the shear modulus and Poisson's ratio for the spheres.
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Substituting Equations (B.2) into Equation (B.1) yields

v
dn, + dt, - -% dap, (B.3a)
dn, + dn, - 4t -'%- dpg «0 (B.3Db)
fgdnl-dn2+%;)— Kdt2-0 (B.3¢)
nl
1/3
-2 !
dn, £, de (B.34)
dn
wvhere K depends on t2 and &3“ follows:
2
a. Fortaincreuing
dn
2.1
ot
y (B.b)
dn dn t, <13
2 1 2
0<—~£<3 K=t +(1r an - )
-dt, - ¢ at, dt, "‘2
b. For ¢ decreasing
dn
P 1
&*& S-p k=1 (B.5)
dn dn an th - t, -1/3
-2 5.2 - - —2 —l
“23 2 K ta2+(1r 1 - o, )

vhere t* is the highest value obtained by ta and is the value from which it is
decressing.
The strain in the vertical or s direction is given by
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dcz =

Q-V
;Y [ Gna + m Kdta ] (B.6)
Ju, 3

and the stresses in the vertical and horizomtal directions are given, respectively,

by
Hp

o, = STEVY

] _% (B.7)
B " 5(1-V)

The problem is nov to determine a solution to the Equations(B.3).
These equations are differential equations in terms of the infinitesimal
increments of the forces. One method of solution is to integrate these equations
exactly where such an integration can be dome. Such an integration is carried
out in Section 3.2 for the case vhere the latersl strain g is zerco. Unfortunately
it does not appear that an exact solution can be obtained for other cases,
particularly for the unloeding cycle. Eemce, in order to study the behavior of the
medivm some other method of solution must be earried out.

Equations (B.5) are 1deally suited for numerical solutiom on a digital
computer. If we consider the equation not as differential increments 4 dut as
finite incremests A the equatioms become

ba, + &ty '{%A’s
m1+m2-m2-{§q' -0 (B.8)

2.V

2y 5 gy g = ©

21/3
4a, =2 Ny

shere K is given by Equations (B.4) or (B.5) with differences replacing the dif-
ferentials.
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If the initial conditions are known, Equations (B.8) can be used
to trace the behavior of the spheres through a cycle of loading. The vertical
load, Py the latersel strain €g or the latersl load Py WAy be incremented and
s solution to Equations (B.8) gives the increments wvhich occur to the other
forces' as a result of these changes. Likewise from these results the increment
to the vertical strain ¢_ may be determined from Equation (B.6).

It should be noted that Equations (B.8) are non-linear difference
equations because K is a function of n, and ta. Hence, the equations must de
solved by iteration for each loed increment cycle.

It vas also noted in Section 3.2 that thesec equations have a singularity
at zero, Therefore it is not possible to odtain any rational behavior by
- starting with the normal forces at the contacts equal to zero. To offset this
problem we introduce an initial hydrostatic stress Py vhich in turn creates
an initial normal force at the contacts of n,. As vas shown in Section 3.1.2 this

gives stress-strain and contact force relationships as follows:

2 .
3
%" "% (8.9)
n, = %.fa P, (B.10)
M
co s 5—(1—'_;,7-90 (8.11)
- 3(0-v) p,
ere p, = ———
° 8R%u (5.12)
B.12
3(1-v) ¥
% " Bnau R

—— . — —— ot —— e

The addition of this initial stress condition does not alter the

governing Equations (B.8) provided that the total normal contact forces
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used in the complisnce termes and strain equations include the hydrostatic
effect. Hence all variables except the tangential forces include the
hydrostatic contridbution. The behavior in addition to the initial hydrostatic
effect or the total effect can then be obtained.

In the computation procedure we remember that the theory is restricted
t0 that behavior vhere sliding does not occur at the contacts. This 18 re-
flected in the condition that K must be greater than zero. When K becomes
negative (or zero) sliding occurs and the solution is no longer valid.

Furthermore, to speed convergence of the iteration process and to
take care of any divergence during the computation for onme increment, & con-
vergence subroutine was included in the progrsa.

A step by step solution is as follows:

(a) Increment losds and/or strains
(b) Calculate all constants
(e) Calculate dn, from Equation (B.34)

(d) Assume values for K and n:I./n2 on the basis of the previous cycle
(e)  Compute at, from a combination of Equation (B.3a) and (B.3c)

(2) Determine dn, from Equation (B.3a)

dn
(g) Check ‘-ﬁ?- for greater than or less than 1/t
2

(r) te K from Equations (B.4) or (B.5) depending on the results
of (g). If K is negative then stop since the equations are invalid,
n,
(1)  Compute =
2

(3 1k, "1/n2 agree vith that assumed in (4), add increments t- total
variables and go on to next cycle

(x) K, nl/lIQ d6 not agree Vith assumed, repeat steps (f) thro gh
(1) using results of this cycle.
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A flov diagram of the computation sequence is given as Fig. B.3.

In order to study the accuracy of the computer solution and to compare
its results vith a closed form solution, & solution was obtained to the one
dimensional problem (cH = 0). This corresponds to that developed in Section
3,2,1 for vhich an exact solution has been obtained, namely, Equation (3.51).

Figure B.4 shows a comparison of the results obtajined from the computer
program with those resulting from Equation (3.51). The accuracy was excellent
and no difference is discernible on a graphical plot. The closeness of the tw
results is illustrated by the saaple values noted on the figure. Further
work is anticipated on this phase of the program and will be carried out as the
need arises. It is expected that it will be useful in studying the unloading
phases and those cases vhere some lateral strain is allowved.
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Fig. B.1 UNIT CUBE OF A FACE CENTERED CUBIC ARRAY
OF EQUAL SPHERES SUBJECTED TO INCREMENTAL
FORCES IN ONE DIMENSIONAL COMFRESSION
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SN, U O

. T
Nyz yZ
Nax
N, T,
«Y\>’ S

//

/ |
ny | )
|/
Tzx Ny )
T2x
/ Nzx
// Nl
] yz
Nyz Tyz TR 7 Ty
Nax
Note That Due To Symmetry

Tox * T =~ Typ3= Ty = T,

Nyz = Nyz = Ny =Ny = N,

Ny = Ney = N

Fig. B.2

FORCES ACTING ON A TYPICAL SPHERE SUBJECTED
TO ONE DIMENSIONAL COMFRESSION
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